
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Hundreds Guide Millions: Adaptive Offline
Reinforcement Learning with Expert Guidance

Qisen Yang*, Shenzhi Wang*, Qihang Zhang*, Gao Huang, Member, IEEE,
and Shiji Song, Senior Member, IEEE

Abstract—Offline reinforcement learning (RL) optimizes the
policy on a previously collected dataset without any interactions
with the environment, yet usually suffers from the distributional
shift problem. To mitigate this issue, a typical solution is to impose
a policy constraint on a policy improvement objective. However,
existing methods generally adopt a “one-size-fits-all” practice,
i.e., keeping only a single improvement-constraint balance for all
the samples in a mini-batch or even the entire offline dataset.
In this work, we argue that different samples should be treated
with different policy constraint intensities. Based on this idea,
a novel plug-in approach named Guided Offline RL (GORL) is
proposed. GORL employs a guiding network, along with only a
few expert demonstrations, to adaptively determine the relative
importance of the policy improvement and policy constraint
for every sample. We theoretically prove that the guidance
provided by our method is rational and near-optimal. Extensive
experiments on various environments suggest that GORL can be
easily installed on most offline RL algorithms with statistically
significant performance improvements.

Index Terms—Deep reinforcement learning, distributional
shift, expert demonstration, offline reinforcement learning.

I. INTRODUCTION

Offline reinforcement learning (RL) [1]–[3] trains a policy
without interactions with the environment. This characteristic
of offline RL brings convenience to applications in many fields
where online interactions are expensive or dangerous [1], such
as robotics [4]–[7], autonomous driving [8], [9], and health
care [10]–[12]. Nevertheless, offline RL usually suffers from
the distributional shift [1] problem, due to the gap between
state-action distributions of the training dataset and test en-
vironment. Specifically, after optimized on the offline dataset,
the agent might encounter unvisited states or misestimate state-
action values during the test in the online environment, leading
to a performance collapse.

A prevailing solution [13]–[17] to the distributional shift
problem is reconciling two conflicting objectives: (1) policy
improvement, which is aimed to optimize the policy according
to current value functions; (2) policy constraint, which keeps
the policy’s behavior around the offline dataset to avoid
the agent being too aggressive. Building on this idea, prior
methods either add an explicit policy constraint term to the
policy improvement equation [13]–[15], or confine the policy

Qisen Yang, Shenzhi Wang, Qihang Zhang, Gao Huang, and Shiji Song are
with the Department of Automation, Tsinghua University, Beijing 100084,
China. Email: {yangqs19, wsz21, qh-zhang19}@mails.tsinghua.edu.cn,
{gaohuang, shijis}@tsinghua.edu.cn. (Corresponding author: Shiji Song.)

* Equal contribution.

implicitly by revising update rules of value functions [16],
[17]. However, these algorithms generally concentrate only
on the global characteristics of the dataset, but ignore the
individual feature of each sample. Typically, they make only
a single trade-off for all the data in a mini-batch [13]–[15]
or even the whole offline dataset [14]–[17]. Such “one-size-
fits-all” trade-offs might not be able to achieve a perfect
balance for each sample, and thus probably limit the potential
of algorithms.

In this work, we argue that, as illustrated in Figure 1a, a
probably ideal improvement-constraint balance for offline RL
is to concentrate more on the policy constraint for samples
resembling expert behaviors, but stress more on the policy im-
provement for data similar to random behaviors. Furthermore,
we notice that expert demonstrations, even in a small quantity,
is proved beneficial to the policy performance by many online
RL methods [18]–[20], but few offline algorithms are able to
take full advantage of them. Based on these two observations,
we propose to determine an adaptive trade-off between the
policy improvement and policy constraint for each sample
with the guidance of only a few expert data. As shown in
Figure 1b, the offline dataset contains an enormous amount
of data, and the guiding dataset consists of a few expert
demonstrations. We alternate between updating the guiding
network on the guiding dataset in a MAML-like [21], [22]
way and training the RL agent on the offline dataset with the
guidance of the guiding network. Our approach points out a
theoretically guaranteed optimization direction for the agent
and is easy to implement on most offline RL algorithms.

Our main contribution is a plug-in approach, dubbed Guided
Offline RL (GORL), which determines the relative importance
of policy constraints for every sample in an adaptive and end-
to-end way. A possibly surprising finding is that, with the
guidance of only a few expert demonstrations, GORL achieves
significant performance improvement on a number of state-of-
the-art offline RL algorithms [13], [16], [17] in various tasks of
D4RL [23]. Theoretical analyses also validate the rationality
and near-optimality of the guidance provided by GORL.

II. PRELIMINARIES

In this section, we introduce some basic concepts and
notations used in the following sections.

RL formulation. RL is usually modeled as a Markov
decision process denoted as a tuple (S,A, P, d0, R, γ), where
S is the state space, A is the action space, P (st+1 | st, a) is

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

ar
X

iv
:2

30
9.

01
44

8v
1

 [
cs

.L
G

]
 4

 S
ep

 2
02

3

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

(a) (b)

policy
constraint

policy
improvementrandom-like

expert-like
𝒟

train

𝒟

𝒢 ℬ

train

guide

offline dataset

guiding dataset

trained policy

guiding network

𝒟

𝒢

ℬ

Ⅰ

Ⅱ

Fig. 1. (a) A possibly ideal improvement-constraint trade-off. The policy constraint is more encouraged for the data similar to expert behaviors (i.e. “expert-
like”). In contrast, the policy improvement is more emphasized for the samples akin to random behaviors (i.e. “random-like”). The data points are t-SNE [24]
visualization of (s, a, s′, r) pairs collected from the Walker2d environment [25]. (b) Offline RL (I) and GORL (II). Different from the vanilla offline RL,
GORL fully utilizes a limited number of expert demonstrations (i.e. the guiding dataset) along with the guiding network and a MAML-like updating method.

the environment’s state transition probability, d0(s0) denotes
a distribution of the initial state s0, R(st, a, st+1) defines a
reward function, and γ ∈ (0, 1] is a discount factor.

Offline RL. Unlike online RL which learns a policy by
interacting with the environment, offline RL aims to optimize
the policy by only an offline dataset D = {(sk, ak, s′k, rk) |
k = 1, 2, · · · , N} without any interaction with the envi-
ronment. Although there exist various offline RL algorithms
with different training losses, their goals are roughly two-
fold, either explicitly [13]–[15] or implicitly [16], [17]: (1)
policy improvement, which is aimed to optimize the policy
according to current value functions; (2) policy constraint,
which keeps the policy around the behavior policy or offline
dataset’s distribution.

Algorithms have to make a trade-off between these two
objectives: if concentrating on the policy improvement term
too much, the policy probably steps into an unfamiliar area and
generates bad actions due to distributional shift [1]; otherwise,
focusing excessively on the policy constraint term might lead
to the policy only imitating behaviors in the offline dataset
D [1], [2] and possibly lacking generalization ability towards
out-of-distribution data [14], [15], [26], [27].

In this paper, we install GORL on several state-of-the-art
offline RL algorithms including TD3+BC [13] and its variant
SAC+BC (applying SAC [28] to the TD3+BC framework),
CQL [16], and IQL [17]. Their policy optimization objectives
can be unified as follows:

π∗ =argmaxπE(s,a)∼D F
(

Lpi (Q, π, s, a)︸ ︷︷ ︸
policy improvement term

,

Lpc (Q, π, s, a)︸ ︷︷ ︸
policy constraint term

, dc︸︷︷︸
constraint degree

)
,

(1)

where π : S → A is a policy, π∗ : S → A is the optimal
policy, Q(s, a) : S × A → R is a state-action value function
estimating the expected sum of discounted rewards after taking
action a at state s.

Furthermore, Lpi(·) and Lpc(·) stand for a policy improve-
ment term and a policy constraint term, and F (·) is a trade-off
function between Lpi(·) and Lpc(·). dc ∈ R is a constraint
degree: larger dc would encourage stronger policy constraints,
and therefore the policy becomes more conservative; other-

wise, the policy would stress the policy improvement, and
thus tends to be more aggressive.

III. METHOD

In Section III-A, we initially elucidate the manner in which
GORL employs guiding data for adapting constraint degrees.
Subsequently, the theoretical underpinnings of GORL’s update
rules are examined in Section III-B1. Section III-B2 offers
proof concerning the near-optimality of the guidance afforded
by GORL. Lastly, practical instantiations of GORL are ex-
pounded upon in Section III-C.

A. The GORL Framework

Consider an offline RL training problem with an offline
dataset D = {(sk, ak, s′k, rk) | k = 1, 2, · · · , N} and a
guiding dataset G = {(sk, ak, s′k, rk) | k = 1, 2, · · · ,M},
where M ≪ N , and Eτ∼G [R(τ)] > Eτ∼D[R(τ)] (τ is a
trajectory and R(τ) denotes the cumulative reward of the tra-
jectory τ). For instance, D is a large offline dataset containing
sub-optimal or even random policies’ trajectories, while G is
a guiding dataset with a small quantity of data collected by
the expert policies.

We adopt the training objective of the policy πθ similar to
that in TD3+BC [13] to demonstrate our method:

π∗ =argmaxπθ
E(sk,ak)∼D

[
Q(sk, πθ(sk))︸ ︷︷ ︸

policy improvement term

− Bw (Lpc(ak, πθ(sk)))︸ ︷︷ ︸
constraint degree

·Lpc(ak, πθ(sk))︸ ︷︷ ︸
policy constraint term

]
,

(2)

where Lpc(·) stands for a policy constraint term, e.g.,
(πθ(sk) − ak)

2 in TD3+BC [13]. The guiding network Bw :
R → R with parameters w takes a policy constraint term Lpc

as input, and outputs a constraint degree.
It’s worth noting in Equation (2) that although inputting the

policy constraint term Lpc to Bw might sacrifice some infor-
mation of samples, it additionally incorporate the information
of targets. Therefore, taking losses as input is a common
practice in machine learning and its validity has been proved
by many sample weighting methods [29]–[32].

Updating the guiding network Bw. Here we introduce how
to update the guiding network Bw to better balance the policy

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

improvement and policy constraint terms. Similar to [21], [29],
we start by updating the policy parameters θ with a gradient
descent step on the offline dataset D:

θ̂
(t)

(w(t)) = θ(t) − αD
1

nD

nD∑
k=1

[
− ∇θQ(sk, πθ(sk))|θ(t)

+Bw(t) (Lpc(ak, πθ(t)(sk))) · ∇θLpc(ak, πθ(sk))|θ(t)

]
,

(sk, ak) ∼ D,

(3)

where nD and αD are the mini-batch size and learning rate
respectively on the offline dataset D. Based on θ̂(w), the
guiding network Bw is updated on the guiding dataset G:

w(t+1) = w(t) − αG
1

nG

nG∑
k=1

∇wLpc(ak, πθ̂
(t)

(w(t))
(sk))

∣∣∣
w(t)

,

(sk, ak) ∼ G,
(4)

where nG is the mini-batch size and αG is the step size on the
guiding dataset G. Note that the policy’s parameters marked
in blue is the updated parameters in Equation (3) related to
w. Because updating on G with purely expert demonstrations,
Equation (4) performs only behavior cloning without the pol-
icy improvement and constraint degree. This will encourage
Bw to output greater constraint degrees for the gradient
directions close to expert imitation, as proved in Theorem 1.

Updating the policy πθ. After performing a gradient
descent step on guiding network Bw in Equation (4), we
further move the policy’s parameters θ toward the direction
of maximizing the policy objective in Equation (2):

θ(t+1) = θ(t) − αD
1

nD

nD∑
k=1

[
− ∇θQ(sk, πθ(sk))|θ(t)︸ ︷︷ ︸

policy improvement gradient

+

Bw(t+1) (Lpc(ak, πθ(t)(sk))) · ∇θLpc(ak, πθ(sk))|θ(t)︸ ︷︷ ︸
policy constraint gradient

]
,

(sk, ak) ∼ D.
(5)

Note that the place marked in blue in Equation (5) is w(t+1)

instead of w(t) in Equation (3). It can be clearly observed in
Equation (5) that the guiding network Bw controls the relative
update steps of policy improvement and policy constraint
gradient for each data pair (sk, ak) in the mini-batches.

B. Theoretical Analysis of GORL
In this section, we first demonstrate the rationality of

GORL’s update mechanism in Section III-B1, and then theo-
retically prove the near-optimality of GORL’s guiding gradient
average in Section III-B2.

1) Rationality of GORL’s Update Mechanism:

Theorem 1. By the chain rule, Equation (4) can be reformu-
lated as:

w(t+1) = w(t) +
αDαG

nD

nD∑
k1=1

Ck1

∂Bw(Lpolicy
k1

(θ(t)))

∂w

∣∣∣∣∣
w(t)

, (6)

where

Ck1 =

 1

nG

nG∑
k2=1

∂Lguide
k2

(θ)

∂θ

∣∣∣∣∣
θ̂
(t)

(w(t))

⊤

︸ ︷︷ ︸
guiding gradient average

∂Lpolicy
k1

(θ)

∂θ

∣∣∣∣∣
θ(t)

.

(7)

Here, the policy’s loss Lpolicy
k1

(θ) = Lpc(ak1
, πθ(sk1

))

with (sk1
, ak1

) ∼ D, and the guiding loss Lguide
k2

(θ) =
Lpc(ak2

, πθ(sk2
)) with (sk2

, ak2
) ∼ G.

The proof, inspired by [29], can be found in Appendix A-A.
It can be observed that in Equation (6), larger Ck1

would
encourage the guiding network Bw to output a larger constraint
degree for the corresponding policy’s loss Lpolicy

k1
(θ(t)). Further

note that in Equation (7), Ck1 is an inner product between

the guiding gradient average and policy’s gradient
∂Lpolicy

k1
(θ)

∂θ .
Therefore, Bw would assign larger weights for those Lpolicy

k1
(θ)

whose gradients are close to the guiding gradient average.
This mechanism is consistent with why MAML [21] or Meta-
Weight-Net [29] functions well.

The effects are two-fold. Firstly, the policy would align its
update directions closer to the guiding gradient average [29].
According to Theorem 2 below, the guiding gradient average
converges to the optimal update gradient in probability, so the
gradient alignment would lead to better update directions for
the policy; Secondly, besides the guidance from the guiding
dataset, the policy could also enjoy plenty of environmental
information provided by a large number of data in the offline
dataset D, which is scarce in the guiding dataset G due to its
small data quantity.

2) Near-Optimality of the Guidance from GORL: To
demonstrate that the guiding gradient average ∂Lguide

∂θ̂
=

1
nG

∑nG
k2=1

∂Lguide
k2

(θ)

∂θ

∣∣∣∣
θ̂
(t)

(w(t))

in Equation (7) is qualified for

guiding the offline training, we denote the guiding gradient
obtained on n expert guiding data as ∂Lguide

1:n (θ̂)

∂θ̂
. Formally,

∂Lguide
1:n (θ̂)

∂θ̂
:=

1

n

n∑
k=1

∂Lguide
k (θ̂)

∂θ̂
. (8)

If the number of guiding data tends to infinity, the training
process on G is behavior cloning on infinite expert data. There-
fore the guiding gradient average will become the optimal
update gradient:

∂Lguide
∗

∂θ̂
:= lim

n→∞

∂Lguide
1:n (θ̂)

∂θ̂
= lim

n→∞
Ek∼unif{1,n}

[
∂Lguide

k (θ̂)

∂θ̂

]
.

(9)
Theorem 2 shows that when n increases, the guiding gra-

dient ∂Lguide
1:n

∂θ̂
will converge to the optimal update gradient

∂Lguide
∗
∂θ̂

in probability at a rate ≥ 1
n .

Theorem 2. (Near-optimality of the guiding gradient average)
Here we analyze the near-optimality of the gradient in each
layer. Suppose θ̂

[l]
∈ Rd1×d2 is the trainable parameters of

the l-th layer, and the elements in ∂Lguide
k (θ̂)

∂θ̂
[l] (k = 1, 2, · · · , n)

are independent with their variances bounded by δ. Then the
gap between the l-th layer’s guiding gradient average on n

expert guiding data ∂Lguide
1:n

∂θ̂
[l] and the l-th layer’s optimal update

gradient ∂Lguide
∗

∂θ̂
[l] , i.e.,

∥∥∥∂Lguide
1:n

∂θ̂
[l] − ∂Lguide

∗

∂θ̂
[l]

∥∥∥
1
, is Op(

1
n). More

specifically,

∀ϵ > 0, P

(∥∥∥∥∥∂Lguide
1:n

∂θ̂
[l]

− ∂Lguide
∗

∂θ̂
[l]

∥∥∥∥∥
1

≥ ϵ

)
≤ d1d2δ

ϵ2
1

n
. (10)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

Therefore, ∂Lguide
1:n

∂θ̂
[l] converges to ∂Lguide

∗

∂θ̂
[l] in probability at a

rate ≥ 1
n , i.e.,

∀ϵ > 0, 0 ≤ lim
n→∞

P

(∥∥∥∥∥∂Lguide
1:n

∂θ̂
[l]

− ∂Lguide
∗

∂θ̂
[l]

∥∥∥∥∥
1

≥ ϵ

)

≤ d1d2δ

ϵ2
lim

n→∞

1

n
= 0,

=⇒ ∂Lguide
1:n

∂θ̂
[l]

p→ ∂Lguide
∗

∂θ̂
[l]

(at a rate ≥ 1

n
).

The proof of Theorem 2 is deferred to Appendix A-B.

Remark 3. Theorem 2’s supposition that ∂Lguide
k (θ̂)

∂θ̂
[l] (k =

1, 2, · · · , n) are independent is valid since, given i-th layer
parameters θ̂

[l]
, the transformation from the k-th expert guid-

ing sample to its associated gradient is deterministic. Addi-
tionally, as expert guiding data is i.i.d., so are ∂Lguide

k (θ̂)

∂θ̂
[l] (k =

1, · · · , n). Further note that gradient computation for a train-
able parameter is independent of other parameters in the same
layer, so ∀k ∈ {1, · · · , n}, i ∈ {1, · · · , d1}, j ∈ {1, · · · , d2},
∂Lguide

k (θ̂)

∂θ̂
[l]
ij

are independent.

Theorem 2 demonstrates that, when the guiding dataset G
has sufficient expert data, the guiding gradient average in
Equation (7) will be approximate to the optimal gradient,
and therefore provides reliable guidance for the offline RL
algorithms. Empirically, as shown by the green bars in Fig-
ure 5a, a quite small quantity of expert data, e.g., 100 (the
offline dataset’s size is typically 1 million), is sufficient for the
guiding dataset G to generate a good enough guiding gradient
average in Equation (7).

C. Practical implementations of GORL.

The pseudo-code of our proposed plug-in framework, i.e.,
GORL, is presented in Algorithm 1. Furthermore, we provide
examples of how to apply GORL to some popular offline RL
algorithms, including TD3+BC [13] and its variant SAC+BC,
IQL [17] and CQL [16]. To implement GORL on offline RL
algorithms, one of the most important things is to find out the
corresponding policy constraint term. Such constraint term is
explicit in some methods (e.g., TD3+BC [13] and SAC+BC),
while much more implicit in other algorithms (e.g., CQL [16]
and IQL [17]).

Algorithm 1 GORL Algorithm
Require: Offline dataset D, guiding dataset G, batch sizes nD, nG ,

learning rates αD, αG , and training steps Ntrain.
Ensure: Policy πθ after optimization.

1: Initialize policy πθ and guiding network Bw.
2: for t = 1 → Ntrain do
3: Sample a mini-batch B

(t)
off = {(sk, ak, s

′
k, rk) | k =

1, 2, · · · , nD} uniformly from D.
4: Update Q with B

(t)
off .

5: Get θ̂
(t)

(w(t)) with B
(t)
off by Equation (3).

6: Sample a mini-batch B
(t)
guide = {(sk, ak, s

′
k, rk) | k =

1, 2, · · · , nG} uniformly from G.
7: Update Bw(t) to Bw(t+1) with B

(t)
guide by Equation (4).

8: Update πθ(t) to πθ(t+1) with B
(t)
off by Equation (5).

9: end for

Implementation on TD3+BC [13]. To implement GORL
on TD3+BC [13], one can follow the procedures in Algorithm
1 with Lpc(ak, πθ) substituted with (πθ(sk)− ak)

2.
Implementation on SAC+BC. SAC+BC is a natural exten-

sion of TD3+BC [13], replacing TD3 [33] with SAC [28]. Its
policy optimization objective is as below:

πθ =argmaxπθ
Ek∼unif{1,N}

[
Q(sk, ãk)−α log πθ(ãk | sk)︸ ︷︷ ︸

maximizing entropy term

− Bw

(
(ãk − ak)

2
)
· (ãk − ak)

2
]
,

(11)
where (sk, ak) ∼ D, α ∈ R is a constant, ãk is an action
sampled from πθ(· | sk) by the reparameterization trick [28],
and πθ(ãk | sk) denotes the probability of πθ choosing ãk
at state sk. The Q-function optimization of SAC+BC is the
same as SAC [28]. By adding the maximizing entropy term
to Equation (3), (4), (5), GORL can be applied to SAC+BC
with the procedures in Algorithm 1.

Implementation on IQL [17]. The policy update objective
in IQL [17] is:

πθ =argmaxθE(s,a)∼D[exp(β(Q(s, a)− V (s)))

· log πθ(a | s)],
(12)

where V (s) is an approximator of Ea [Q(s, a)]. The intu-
ition behind Equation (12) is that, if some action ak is in
advantage, i.e., Q(s, ak) > Ea [Q(s, a)] = V (sk), the term
exp (β (Q(s, ak)− V (s))) will be larger than its expectation
Ea [exp (β (Q(s, a)− V (s)))]. Therefore, after updating with
Equation (12), πθ is more likely to choose ak rather than other
actions. It’s obvious that scalar β, together with Q(s, a)−V (s),
controls to what extent πθ accepts action a at state s.

Based on the observation above, we reformulate Equa-
tion (12) into:

πθ =argmaxθEk∼unif{1,N}[exp (βk (Q(sk, ak)− V (sk)))

log πθ(ak | sk)], (sk, ak) ∼ D.
(13)

Compared with Equation (12), Equation (13) assigns
a different scalar βk for each data pair (sk, ak).
However, note that exp (βk (Q(sk, ak)− V (sk))) =
(exp (Q(sk, ak)− V (sk)))

βk . It’s difficult to find an
optimal βk end-to-end because βk is the exponent of
(exp (Q(sk, ak)− V (sk))).

To make the optimization of βk possible, we further change
Equation (13) into:

πθ =argmaxθEk∼unif{1,N}[βk exp(Q(sk, ak)− V (sk))

log πθ(ak | sk)], (sk, ak) ∼ D,
(14)

where βk is multiplied by exp (Q(sk, ak)− V (sk)), which is
much easier to optimize.

GORL can be implemented on IQL following Algorithm 1
changed with the new objective (Equation (14)). Bw is used
to generate βk by taking log πθ(ãk | sk) as input.

Implementation on CQL [16]. The policy update objective
in CQL [16] is:

πθ = argmaxθE(s,a)∼D [Q(s, a)− log πθ(a | s)] , (15)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

TABLE I
AVERAGE NORMALIZED SCORE OVER THE FINAL 10 EVALUATIONS AND 5 SEEDS. GORL ACHIEVES GREAT PERFORMANCE IMPROVEMENT ON ALL THE 4

STATE-OF-THE-ART ALGORITHMS IN THE LOCOMOTION AND ADROIT TASKS.

Dataset TD3+BC [13] SAC+BC [13], [28] IQL [17] CQL [16] Avg.
Base Ours Base Ours Base Ours Base Ours Base Ours

halfcheetah-random-v2 11.2 16.5 12.9 15.6 10.6 12.2 22.3 20.3 14.3 16.2
hopper-random-v2 8.8 16.8 7.9 28.2 7.9 8.4 8.7 9.8 8.3 15.8
walker2d-random-v2 1.3 2.3 1.6 2.6 6.6 6.3 1.7 3.4 2.8 3.6
halfcheetah-medium-v2 48.2 51.8 49.9 53.6 46.8 50.2 48.9 51.3 48.5 51.7
hopper-medium-v2 59.8 67.1 47.9 49.1 63.9 68.4 70.6 72.2 60.6 64.2
walker2d-medium-v2 83.9 85.7 84.6 86.3 77.3 78.5 83.1 83.5 82.2 83.5
halfcheetah-medium-replay-v2 44.6 46.7 44.7 46.8 43.9 45.6 37.4 47.0 42.6 46.5
hopper-medium-replay-v2 61.7 74.7 45.8 55.4 70.9 74.1 93.4 94.6 67.9 74.7
walker2d-medium-replay-v2 79.5 84.5 78.2 84.4 67.7 68.0 82.8 80.4 77.0 79.3
halfcheetah-medium-expert-v2 91.8 95.6 89.4 90.8 80.9 85.3 65.9 81.1 82.0 88.2
hopper-medium-expert-v2 98.6 105.3 93.9 94.7 39.8 49.8 100.1 105.3 83.1 88.8
walker2d-medium-expert-v2 110.2 109.5 110.1 110.6 108.4 109.2 108.8 109.2 109.4 109.6
locomotion-v2 total 699.5 756.5 666.9 718.1 624.7 655.9 723.9 758.1 678.8 722.1
pen-human-v1 48.6 71.9 35.6 83.1 71.5 86.1 37.5 51.5 48.3 73.1
hammer-human-v1 1.5 1.7 1.6 2.2 1.4 1.6 4.4 5.6 2.2 2.8
door-human-v1 -0.1 0.0 -0.1 -0.1 4.3 5.7 9.9 11.6 3.5 4.3
relocate-human-v1 0.0 0.1 0.1 0.1 0.1 0.7 0.2 0.2 0.1 0.2
pen-cloned-v1 38.6 46.8 23.4 39.7 37.3 78.8 39.2 64.1 34.6 57.3
hammer-cloned-v1 3.6 3.5 1.1 0.8 2.1 1.9 2.1 1.6 2.2 1.9
door-cloned-v1 -0.1 0.0 -0.1 0.0 1.6 4.4 0.4 1.3 0.5 1.4
relocate-cloned-v1 -0.2 0.0 -0.2 -0.2 -0.2 0.1 -0.1 0.0 -0.2 0.0
adroit-v1 total 92.1 123.9 61.5 125.5 118.1 179.2 93.6 135.8 91.3 141.1

total 791.6 880.4 728.4 843.6 742.8 835.1 817.5 893.9 770.1 863.3

where Q(s, a) is a conservative approximation of the state-
action value. The policy constraint objective is implicitly
contained during the conservative Q-learning. The more con-
servative Q-value represents the stronger policy constraint. In
this case, GORL can be implemented following Algorithm 1
with the new policy update objective below:

πθ =argmaxθE(s,a)∼D[Bw (Q(s, a)) ·Q(s, a)

− log πθ(a | s)].
(16)

IV. EXPERIMENTAL EVALUATION

In this section, we study performance improvement brought
by GORL on offline RL algorithms.

Baselines. We consider several state-of-the-art methods as
baselines, including TD3+BC [13], SAC+BC (a variant of
TD3+BC substituting TD3 [33] with SAC [28]), CQL [16],
and IQL [17]. The former two algorithms adopt explicit
policy constraints based on behavior cloning, while the latter
two implicitly control the distributional shift by learning
conservative Q values and avoiding querying unseen actions
respectively. We follow the author-provided implementations
of the above methods.

Datasets. GORL is evaluated on the Gym locomotion [25],
[34] and Adroit robotic manipulation tasks [35] in the D4RL
benchmark [23]. Locomotion includes datasets in various
environments with different qualities. Adroit considers con-
trolling a 24-DoF robotic hand to complete several tasks and

collects datasets from various sources. The standard offline
dataset contains approximately 100 thousand or 1 million
(sk, ak, s

′
k, rk) tuples. For both locomotion and adroit, we

randomly select 200 tuples from their official expert datasets
as the guiding data G. More training details are given in
Appendix B.

Comparisons. Performances of the state-of-the-art offline
RL algorithms w/o and w/ GORL are presented in Table I.
Generally, our method obtains significant and stable perfor-
mance improvements on various tasks and various algorithms.
From the Avg. column in Table I, GORL surpasses the vanilla
algorithms on all the locomotion datasets. As for adroit tasks,
existing methods typically struggle to learn reasonable policies
on some challenging datasets. Although limited by its base
methods’ performances, GORL still achieves substantially
higher scores on the pen-human and pen-cloned datasets.

Paired samples t-test. Considering that offline-trained poli-
cies usually perform with high variance, we additionally
conduct the paired-samples t-test validation. The purpose of
this experiment is to determine whether there is statistical
evidence that the mean difference between the baseline method
and the proposed method is significantly different from zero.
50 samples from the last 10 evaluations and 5 seeds for each
task are paired in experiments and the significance level is
set as α = 0.05. If the p-value is above the significance
level, the null hypothesis (i.e., the mean difference is not
significantly different from zero) is accepted. Otherwise, the

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

Paired Samples 𝑡-Test

Fig. 2. Statistical validations. The alternative hypothesis means GORL
significantly outperforms the vanilla algorithms while the null one stands
for insignificant differences. Results show that GORL brings statistically
significant performance improvements on most of the tasks under the 0.05
significant level. (HC = Halfcheetah, Hop = Hopper, W = Walker, r = random,
m = medium, mr = medium-replay, me = medium-expert, e = expert, h =
human, c = cloned.)

alternative hypothesis is accepted. Figure 2 shows a general
acceptance of the alternative hypothesis, which means that our
GORL indeed brings a statistically significant improvement
to the TD3+BC algorithm. Furthermore, Table II provides a
more comprehensive validation of all four base algorithms
on both locomotion and adroit datasets. On average, GORL
consistently brings significant performance improvement to all
of the base algorithms.

Policy constraint. To analyze GORL’s effects on the policy
constraint intensity, we record the policy constraint loss of
TD3+BC [13] and TD3+BC with GORL during the whole
training process, as shown in Figure 3. It can be observed
that GORL significantly increases the relative policy constraint
intensity of the expert data. The observation reveals that GORL
can indeed encourage the algorithms to stress more on the
policy constraint for high-quality samples.

(a) TD3+BC (b) TD3+BC with GORL

N
o

rm
al

iz
ed

 P
o

li
cy

 C
o

n
st

ra
in

t
L

o
ss

N
o

rm
al

iz
ed

 P
o

li
cy

 C
o

n
st

ra
in

t
L

o
ss

Training Epochs Training Epochs

random

expert

random

expert

Fig. 3. The policy constraint loss of TD3+BC and TD3+BC with GORL
during the training process. For a quick comparison, we normalize the curves
in each figure to range [0, 1]. GORL can greatly increase the relative policy
constraint intensity of the expert data.

Runtime. As shown in Table III, we measure the training
wall-clock time of algorithms w/o and w/ GORL on D4RL
locomotion tasks. On average, GORL only brings 1.9% extra
training cost to the base algorithms.

V. DISCUSSION

A. Are adaptive weights better than the fixed weight?

During guided learning, each sample is assigned a different
weight and the weights vary through training. Specifically,

TABLE II
RESULTS OF PAIRED SAMPLES t-TEST, WHICH STATISTICALLY VALIDATE

THE SIGNIFICANCE (α < 0.05) OF PERFORMANCE IMPROVEMENT
BROUGHT BY GORL AVERAGED ON ALL DATASETS.

TD3+BC SAC+BC CQL IQL
P-Value (α) 9.33E-08 8.96E-15 3.77E-09 0.023349
Significance TRUE TRUE TRUE TRUE

TABLE III
TRAINING WALL-CLOCK TIME ON GPU 2080TI.

Runtime Base Ours Increase

TD3+BC [13] 2h 12m 2h 17m 3.7%
SAC+BC [13], [28] 2h 56m 2h 59m 1.7%
IQL [17] 3h 52m 3h 58m 2.6%
CQL [16] 9h 12m 9h 19m 1.3%

Average 4h 33m 4h 38m 1.9%

when fed with relatively high-quality samples, the agent
may be inclined to imitation learning; otherwise, when en-
countering lower-quality samples, it may choose to slightly
diverge from these samples’ distribution. We claim that such
adaptive weights seek to achieve the full potential of every
sample, leading to higher performance compared with the fixed
weight. To verify this argument, we compare the fixed-weight
method with our adaptive-weights approach on TD3+BC [13]
algorithm. The possible values of the fixed weight are in the
set {0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}, and the range of adaptive
weights is [0.0, 1.0]. As shown by the total scores in Table IV,
our adaptive-weights approach outperform all the fixed-weight
methods by a large margin (≥ 52.2). Meanwhile, since the
policy’s performance varies greatly with different values of
the fixed weight, the fixed-weight methods might require much
more parameter tuning than our adaptive-weights approach.

B. Does limited expert data benefit vanilla training?

Acquiring a large amount of expert data may be very
expensive or even impossible in the real world. Hence, it is of
great value to make the best use of limited high-quality data.
Although the proposed guided training achieves significant
improvement on existing offline RL algorithms, it remains
unclear whether the benefit comes from the training scheme or
the extra expert data. In other words, would the limited expert
data also work well in the vanilla training? To investigate that,
we obtain the mixed offline data by simply adding the limited
expert data into the pure offline data and randomly mixing
them. Following the vanilla training ways of baselines, we
compare the percent difference of the performance with mixed
data to that with pure offline data, as shown in Figure 4.
Experiments validate that the vanilla training methods cannot
benefit from the limited high-quality data. On the contrary, the
distributional gap between the pure offline data and the limited
expert data makes the optimization process harder and more
unstable, leading to significant performance degradation.

C. How does GORL differ from action selection?

The proposed GORL learns an adaptive weight for every
individual sample, while action selection aims to pick the

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

TABLE IV
COMPARISON BETWEEN FIXED WEIGHTS AND ADAPTIVE WEIGHTS (OURS) BASED ON TD3+BC [13].

Dataset Fixed Weight Ours

0.0 0.1 0.3 0.5 0.7 0.9 1.0 0∼1
halfcheetah-random-v2 32.5 24.9 19.3 14.6 13.5 12.2 11.2 16.5
hopper-random-v2 15.5 24.7 16.6 8.3 8.3 8.6 8.8 16.8
walker2d-random-v2 0.1 -0.2 0.1 -0.2 0.4 1.6 1.3 2.3
halfcheetah-medium-v2 20.2 59.8 53.7 50.7 49.4 48.7 48.2 51.8
hopper-medium-v2 0.6 41.0 81.0 64.6 61.0 59.8 59.8 67.1
walker2d-medium-v2 0.9 1.9 54.0 85.2 84.8 83.5 83.9 85.7
halfcheetah-medium-replay-v2 44.5 52.2 48.3 46.3 45.5 44.9 44.6 46.7
hopper-medium-replay-v2 33.7 86.9 85.7 64.5 68.2 69.9 61.7 74.7
walker2d-medium-replay-v2 13.2 22.4 86.3 83.1 79.8 77.1 79.5 84.5
halfcheetah-medium-expert-v2 6.5 44.9 71.0 75.7 82.1 89.1 91.8 95.6
hopper-medium-expert-v2 0.9 3.2 80.1 100.3 99.6 98.6 98.6 105.3
walker2d-medium-expert-v2 -0.3 4.4 68.2 108.1 108.1 110.2 110.2 109.5
total 168.5 366.1 664.3 701.1 700.7 704.3 699.5 756.5

H
C

-r
H

op
-r

W
-r

H
C

-m
H

op
-m

W
-m

H
C

-m
r

H
op

-m
r

W
-m

r
H

C
-m

e
H

op
-m

e
W

-m
e

Pe
n-

h
Pe

n-
c

To
ta

l

40
20

0
20
40

Pe
rc

en
t D

iff
er

en
ce TD3+BC

H
C

-r
H

op
-r

W
-r

H
C

-m
H

op
-m

W
-m

H
C

-m
r

H
op

-m
r

W
-m

r
H

C
-m

e
H

op
-m

e
W

-m
e

Pe
n-

h
Pe

n-
c

To
ta

l

40

20

0

20

40

SAC+BC

H
C

-r
H

op
-r

W
-r

H
C

-m
H

op
-m

W
-m

H
C

-m
r

H
op

-m
r

W
-m

r
H

C
-m

e
H

op
-m

e
W

-m
e

Pe
n-

h
Pe

n-
c

To
ta

l

40

20

0

20

40

IQL

H
C

-r
H

op
-r

W
-r

H
C

-m
H

op
-m

W
-m

H
C

-m
r

H
op

-m
r

W
-m

r
H

C
-m

e
H

op
-m

e
W

-m
e

Pe
n-

h
Pe

n-
c

To
ta

l

40

20

0

20

40

CQL

Fig. 4. Percent performance difference of vanilla training with mixed data compared to that with pure offline data. Mixed data means adding 200 expert
samples to the offline data without guidance. General performance drops show simply mixing limited expert samples with offline data is usually harmful.

TABLE V
COMPARISON BETWEEN ACTION SELECTION AND GUIDED TRAINING.

CQL(G) REPRESENTS THE CQL [16] WITH OUR GORL.

Dataset Filt. BC [36] DT [36] RvS-R [37] CQL(G)

HC-r 2.0 2.2 3.9 20.3
Hop-r 4.1 7.5 7.7 9.8
W-r 1.7 2.0 -0.2 3.4
HC-m 42.5 42.6 41.6 51.3
Hop-m 56.9 67.6 60.2 72.2
W-m 75.0 74.0 71.7 83.5
HC-mr 40.6 36.6 38.0 47.0
Hop-mr 75.9 82.7 73.5 94.6
W-mr 62.5 66.6 60.6 80.4
HC-me 92.9 86.8 92.2 81.1
Hop-me 110.9 107.6 101.7 105.3
W-me 109.0 108.1 106.0 109.2
total 674.0 684.3 656.9 758.1

best samples for offline learning. On the one hand, both
guided training and action selection can be considered as
conditional behavior cloning, which adjusts the degree of
policy constraint according to specific conditions. On the other
hand, guided training can be more informative and efficient
since it makes better use of the entire dataset, rather than
only the high-performing samples. We compare to the Filtering
(“Filt.”) BC [36], DT [36], and RvS-R [37] algorithms on
the locomotion datatsets, as shown in Table V. DT adopts
transformer architectures to perform behavior cloning on a
subset of the data. Filt. BC performs BC after filtering for
the 10% trajectories with the highest returns. RvS-R uses
supervised learning to condition on reward values during
reinforcement learning. The baselines’ results are borrowed
from their original papers [36], [37]. Comparison results

indicate that our guided training greatly outperforms the action
selection methods.

D. What if we possess more expert data?

Compared with the vanilla algorithm which simply mixes
expert demonstrations with the offline dataset, the guided train-
ing better utilizes the limited high-quality data. However, it is
also notable that the offline data which is mixed with abundant
expert samples can also result in superior performances under
the vanilla algorithm. For example, as shown in Table I, the
overall performance of baseline algorithms on the medium-
expert dataset is much better than that on the medium dataset.
Hence, we further conduct experiments on different numbers
of expert samples and draw some empirical conclusions on the
best way of using expert data. In Figure 5a, the vanilla scheme
with expert-mixed data (denoted as “D(e) + D”) and the
guided scheme (denoted as “D(e) −→ D”) are compared to the
baseline scheme with pure offline data. When the amount of
expert data is small, the guided scheme constantly outperforms
the mixed scheme. However, when the amount of expert
samples reaches 105, the mixed scheme gains greater benefits.
Furthermore, we train the policy on the expert-only dataset
(denoted as “D(e)”) with different dataset scales, as shown in
Figure 5b. It’s obvious that the policy’s scores remain quite low
until the expert sample number reaches 104, which coincides
with our suggestion in Section III-B1 that a large amount
of training data is necessary for offline RL. In conclusion:
(1) the limited expert data itself cannot produce a satisfying
agent, due to the insufficiency of training samples; (2) GORL
can generate reliable guidance for offline RL with only a
few expert samples (e.g., 100), but performance improvement

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

(a)

(b)

Fig. 5. Results from various numbers of expert samples. D represents the
abundant low-quality data and D(e) refers to the expert samples. (a) “D(e)
−→ D” means training a policy on D with the guidance of D(e). “D(e) + D”
means training a policy on the vanilla mixture of D and D(e). A larger positive
percent difference shows a larger performance improvement, compared to the
policy simply trained from D. (b) “D(e)” means training a policy on D(e)
without D. A larger score (normalized according to D4RL [23]) corresponds
to a better policy.

would become insignificant if expert demonstrations increase
excessively.

VI. RELATED WORK

Offline RL. Due to the state-action distribution gap between
the training dataset and the test environment, offline RL suffers
from the distributional shift [1], [38] problem. Much prior
work attempts to mitigate this issue through constraining or
regularizing the learned policy to be approximated to the
behavioral policy. As mentioned in BRAC [15], both explicit
and implicit approaches are beneficial.

Some methods explicitly implement the constraint by
adding a policy constraint term to the policy improve-
ment equation [13], [14], [39]–[41]. Specifically, inspired
by PPO+BC [39], DDPG+BC [41], and AWAC [40],
TD3+BC [13] converts the online RL algorithm (i.e. TD3 [33])
into the offline form via adding a term of behavior cloning loss
to the actor’s policy improvement loss. Besides, BEAR [14]
utilizes a distribution-constrained policy to lessen the accumu-
lation of bootstrapping errors.

Other approaches confine the policy implicitly by revising
update rules of value functions [16], [17], [42], [43]. In more
detail, by including an extra CQL regularization term in the Q-
function update equation, Kumar et al. [16] propose a method
that learns a conservative Q-function to estimate a lower bound
of the value function. Instead of evaluating out-of-distribution
actions directly, IQL [17] only estimates the maximum Q-
value over actions within the data distribution via utilizing
expectile regression.

There are also methods leveraging imitation learning to
assist RL training, called RvS (offline RL via supervised learn-
ing) [37], which are commonly imitation learning methods

conditioned on goals [44]–[46] or reward values [36], [47],
[48]. Reweighting or filtering are also adopted to advantage
high-performing actions [47], [49]–[53].

Sample weighting method. To mitigate the problem of
overfitting bias in training data, prior methods attempt to
design a weighting function that maps from training loss to
sample weight. Researchers start by designing such functions
manually. They focus on pre-designing a weighting function
generating sample weights with training losses as input. Gen-
erally speaking, methods in this category either force sample
weights to monotonically increase (such as AdaBoost [30],
hard example mining [31], and focal loss [32]) or decrease
(such as SPL [54], Active bias [55] and iterative reweight-
ing [56]).

Inspired by previous meta-learning approaches [21], [57]–
[59], some methods learn adaptive weighting functions via
meta-learning. FWL [60] proposes a semi-supervised algo-
rithm leveraging only a small quantity of high-quality data and
a large set of unlabeled data samples. Learning to Teach [61],
[62] adopts a reinforcement learning agent as the teacher
model to facilitate the training of the student model. For
a similar purpose, MentorNet [63] leverages a bidirectional
LSTM network [59] to supervise the training of StudentNet.
With the guidance of a small number of unbiased meta-data,
Meta-Weight-Net [29] also utilizes an MLP with one hidden
layer to mitigate the problem of overfitting. Different from the
methods mentioned above, L2RW [64] learns weights from
gradient directions, without an explicit network.

VII. CONCLUSION

We present Guided Offline RL (GORL), a general training
framework compatible with most offline RL algorithms, to
learn an adaptive intensity of policy constraint under the
guidance of only a few high-quality data. Specifically, GORL
exerts a weak (or strong) constraint to “random-like” (or
“expert-like”) samples in the offline dataset. To our knowledge,
this is the first offline RL method that takes full advantage
of a small number of expert demonstrations. Theoretically,
we prove that even quite limited expert data can provide
reliable guidance. Empirically, we validate our method on
several popular offline RL algorithms and abundant tasks in
the D4RL benchmark. Moreover, we discuss the benefits of
adaptive policy constraints and guiding expert data through
various ablation studies. Nevertheless, although we investigate
the guidance of a few expert data, the feasibility of achieving
the adaptive constraint without any guiding data remains to be
explored in future work.

ACKNOWLEDGMENTS

This work is supported in part by the National Science
and Technology Major Project of the Ministry of Science
and Technology of China under Grants 2019YFC1408703, the
National Natural Science Foundation of China under Grants
62022048 and 62276150, the Guoqiang Institute of Tsinghua
University.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

APPENDIX A
THEOREM PROOFS

A. Proof of Theorem 1

Denote Lpolicy
k1

(θ) = Lpc(ak1
, πθ(sk1

)) with
(sk1

, ak1
) ∼ D, and Lguide(θ) = 1

nG

∑nG
k2=1 L

guide
k2

(θ) =
1
nG

∑nG
k2=1 [Lpc(ak2

, πθ(sk2
))].

∂Lguide(θ̂
(t)
(w))

∂w

∣∣∣∣∣
w(t)

=

(
∂θ̂

(t)
(w)

∂w

∣∣∣∣∣
w(t)

)⊤
∂Lguide(θ)

∂θ

∣∣∣∣
θ̂
(t)

(w(t))

=

(
− αD

nD

nD∑
k1=1

∂Lpc(ak1
, πθ(sk1

))

∂θ

∣∣∣∣
θ(t)

·
(
∂Bw(Lpc(ak1

, πθ(t)(sk1
)))

∂w

∣∣∣∣
w(t)

)⊤
)⊤

· ∂L
guide(θ)

∂θ

∣∣∣∣
θ̂
(t)

(w(t))

= −αD

nD

nD∑
k1=1

[
∂Bw(Lpc(ak1

, πθ(t)(sk1
)))

∂w

∣∣∣∣
w(t)

·
(
∂Lpc(ak1

, πθ(sk1
))

∂θ

∣∣∣∣
θ(t)

)⊤
∂Lguide(θ)

∂θ

∣∣∣∣
θ̂
(t)

(w(t))

]

= −αD

nD

nD∑
k1=1

[
∂Bw(Lpc(ak1

, πθ(t)(sk1
)))

∂w

∣∣∣∣
w(t)

·
(
∂Lpc(ak1 , πθ(sk1))

∂θ

∣∣∣∣
θ(t)

)⊤

· 1

nG

nG∑
k2=1

∂Lguide
k2

(θ)

∂θ

∣∣∣∣∣
θ̂
(t)

(w(t))

]

= −αD

nD

nD∑
k1=1

[1

nG

nG∑
k2=1

∂Lguide
k2

(θ)

∂θ

∣∣∣∣∣
θ̂
(t)

(w(t))

⊤

·
∂Lpolicy

k1
(θ)

∂θ

∣∣∣∣∣
θ(t)

∂Bw(Lpolicy
k1

(θ(t)))

∂w

∣∣∣∣∣
w(t)

]

= −αD

nD

nD∑
k1=1

Ck1

∂Bw(Lpolicy
k1

(θ(t)))

∂w

∣∣∣∣∣
w(t)

,

where

Ck1
=

 1

nG

nG∑
k2=1

∂Lguide
k2

(θ)

∂θ

∣∣∣∣∣
θ̂
(t)

(w(t))

⊤
∂Lpolicy

k1
(θ)

∂θ

∣∣∣∣∣
θ(t)

.

Based on the observation above, Equation (4) can be rewrit-
ten as:

w(t+1) = w(t) − αG
∂Lguide(θ̂

(t)
(w))

∂w

∣∣∣∣∣
w(t)

= w(t) +
αDαG

nD

nD∑
k1=1

Ck1

∂Bw(Lpolicy
k1

(θ(t)))

∂w

∣∣∣∣∣
w(t)

.

Therefore, Theorem 1 is proven.

B. Proof of Theorem 2

We start proving Theorem 2 by Lemma 1 derived from
Kolmogorov’s inequality.

Lemma 1. For independent random variables ζ1, ζ2, · · · , ζn,
supposing that Eζ21 ,Eζ22 , · · · ,Eζ2n exist, then the following
inequality holds:

∀ϵ > 0, P

(∣∣∣∣∣
n∑

i=1

ζi

∣∣∣∣∣ ≥ ϵ

)
≤ 1

ϵ2

n∑
i=1

Eζ2i . (17)

Furthermore, if Eζi = 0 (i = 1, 2, · · · , n), then

∀ϵ > 0, P

(∣∣∣∣∣
n∑

i=1

ζi

∣∣∣∣∣ ≥ ϵ

)
≤ 1

ϵ2

n∑
i=1

Var(ζi). (18)

Proof. By Kolmogorov’s inequality, we know that

∀ϵ > 0, P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

ζi

∣∣∣∣∣ ≥ ϵ

)
≤ 1

ϵ2

n∑
i=1

Eζ2i .

Noticing that

P

(∣∣∣∣∣
n∑

i=1

ζi

∣∣∣∣∣ ≥ ϵ

)
≤ P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

ζi

∣∣∣∣∣ ≥ ϵ

)
, (19)

Equation (17) is proven. Moreover, when Eζi = 0, we can
infer that Eζ2i = Var(ζi)+(Eζi)2 = Var(ζi). Substituting Eζ2i
in Equation (17) with Var(ζi), Equation (18) is proven.

We continue to prove Theorem 2 by noticing that:∥∥∥∥∥∂Lguide
1:n (θ̂)

∂θ̂
[l]

−∂Lguide
∗

∂θ̂
[l]

∥∥∥∥∥
1

=

∥∥∥∥∥ 1n
n∑

k=1

∂Lguide
k (θ̂)

∂θ̂
[l]

− ∂Lguide
∗

∂θ̂
[l]

∥∥∥∥∥
1

=
1

n

∥∥∥∥∥
n∑

k=1

(
∂Lguide

k (θ̂)

∂θ̂
[l]

− ∂Lguide
∗

∂θ̂
[l]

)∥∥∥∥∥
1

≤ 1

n

n∑
k=1

∥∥∥∥∥∂Lguide
k (θ̂)

∂θ̂
[l]

− ∂Lguide
∗

∂θ̂
[l]

∥∥∥∥∥
1

=
1

n

n∑
k=1

d1∑
i=1

d2∑
j=1

∣∣∣∣∣∣∂L
guide
k (θ̂)

∂θ̂
[l]

ij

− ∂Lguide
∗

∂θ̂
[l]

ij

∣∣∣∣∣∣ .

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

According to Theorem 2’s assumption, ∂Lguide
k (θ̂)

∂θ̂
[l]
ij

(k ∈
{1, 2, · · · , n}, i ∈ {1, 2, · · · , d1}, j ∈ {1, 2, · · · , d2}) are
independent, and the variance of each element in ∂Lguide

k (θ̂)

∂θ̂
[l] −

∂Lguide
∗

∂θ̂
[l] is δ-bounded, i.e., ∀k ∈ {1, 2, · · · , n},∀i ∈

{1, 2, · · · , d1},∀j ∈ {1, 2, · · · , d2},Var
(

∂Lguide
k (θ̂)

∂θ̂
[l]
ij

)
≤ δ.

Because ∂Lguide
∗

∂θ̂
[l] is a constant vector, ∂Lguide

k (θ̂)

∂θ̂
[l]
ij

− ∂Lguide
∗

∂θ̂
[l]
ij

(k ∈
{1, 2, · · · , n}, i ∈ {1, 2, · · · , d1}, j ∈ {1, 2, · · · , d2}) are also
independent. Further notice that

Ek

∂Lguide
k (θ̂)

∂θ̂
[l]

ij

− ∂Lguide
∗

∂θ̂
[l]

ij

 = 0.

Therefore,

Ek

∂Lguide

k (θ̂)

∂θ̂
[l]

ij

− ∂Lguide
∗

∂θ̂
[l]

ij

2

= Var

∂Lguide
k (θ̂)

∂θ̂
[l]

ij

− ∂Lguide
∗

∂θ̂
[l]

ij

+

Ek

∂Lguide
k (θ̂)

∂θ̂
[l]

ij

− ∂Lguide
∗

∂θ̂
[l]

ij

2

= Var

∂Lguide
k (θ̂)

∂θ̂
[l]

ij

− ∂Lguide
∗

∂θ̂
[l]

ij

= Var

∂Lguide
k (θ̂)

∂θ̂
[l]

ij

 ∂Lguide
∗

∂θ̂
[l]

ij

are constants

≤ δ,

i.e., Ek

[(
∂Lguide

k (θ̂)

∂θ̂
[l]
ij

− ∂Lguide
∗

∂θ̂
[l]
ij

)2
]
(k ∈ {1, 2, · · · , n}, i ∈

{1, 2, · · · , d1}, j ∈ {1, 2, · · · , d2}) exist. By Lemma 1 we
know that ∀ϵ > 0,

P

 1

n

n∑
k=1

d1∑
i=1

d2∑
j=1

∣∣∣∣∣∣∂L
guide
k (θ̂)

∂θ̂
[l]

ij

− ∂Lguide
∗

∂θ̂
[l]

ij

∣∣∣∣∣∣ ≥ ϵ

≤ 1

ϵ2

n∑
k=1

d1∑
i=1

d2∑
j=1

Var

 1

n

∂Lguide
k (θ̂)

∂θ̂
[l]

ij

− 1

n

∂Lguide
∗

∂θ̂
[l]

ij

 .

By Theorem 2’s assumption, the variance of each

element in ∂Lguide
k (θ̂

[l]
)

∂θ̂
[l] − ∂Lguide

∗

∂θ̂
[l] is δ-bounded, i.e.,

∀k ∈ {1, 2, · · · , n},∀i ∈ {1, 2, · · · , d1},∀j ∈
{1, 2, · · · , d2},Var

(
∂Lguide

k (θ̂)

∂θ̂
[l]
ij

)
≤ δ. Therefore,

P

(∥∥∥∥∥∂Lguide
1:n (θ̂)

∂θ̂
[l]

− ∂Lguide
∗

∂θ̂
[l]

∥∥∥∥∥
1

≥ ϵ

)

≤ P

 1

n

n∑
k=1

d1∑
i=1

d2∑
j=1

∣∣∣∣∣∣∂L
guide
k (θ̂)

∂θ̂
[l]

ij

− ∂Lguide
∗

∂θ̂
[l]

ij

∣∣∣∣∣∣ ≥ ϵ

≤ 1

ϵ2

n∑
k=1

d1∑
i=1

d2∑
j=1

Var

 1

n

∂Lguide
k (θ̂)

∂θ̂
[l]

ij

− 1

n

∂Lguide
∗

∂θ̂
[l]

ij

=
1

ϵ2

n∑
k=1

d1∑
i=1

d2∑
j=1

Var

 1

n

∂Lguide
k (θ̂)

∂θ̂
[l]

ij

because

∂Lguide
∗

∂θ̂
[l]

ij

are constants

≤ 1

ϵ2

n∑
k=1

d1∑
i=1

d2∑
j=1

1

n2
δ

=
d1d2δ

ϵ2
1

n
.

APPENDIX B
IMPLEMENTATION DETAILS

Software. We use the following software versions:
• Python 3.9.11
• Pytorch 1.11.0+cu113 [65]
• Gym 0.23.1 [34]
• MuJoCo 2.1.31 [25]
• mujoco-py 2.1.2.14
• d4rl 1.1 [23]

The Gym locomotion-v2 [25], [34] and robotic manipulation
adroit-v1 [35] versions in the D4RL benchmark [23] datasets
are adopted.

Hyperparameters. We consider several state-of-the-art
methods as baselines, including TD3+BC [13], SAC+BC (a
variant of TD3+BC substituting TD3 [33] with SAC [28]),
CQL [16], and IQL [17]. Our implementations of
TD3+BC2 [13], CQL3 [16], and IQL4 [17] are based
on respective published papers and author-provided
implementations from GitHub. For SAC+BC, we select
the optimal hyperparameters by grid search. For fair
comparison, GORL keeps the same hyperparameters as
that of the corresponding base algorithms. More Details of
hyperparameters are provided in Table VI, VII, VIII, and IX.

1License information: https://www.roboti.us/license.html
2https://github.com/sfujim/TD3 BC
3https://github.com/aviralkumar2907/CQL
4https://github.com/rail-berkeley/rlkit/tree/master/examples/iql

https://www.roboti.us/license.html
https://github.com/sfujim/TD3_BC
https://github.com/aviralkumar2907/CQL
https://github.com/rail-berkeley/rlkit/tree/master/examples/iql

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 11

TABLE VI
HYPERPARAMETERS OF TD3+BC [13] WITH GORL ON LOCOMOTION /

ADROIT DATASETS.

Hyperparameter Value

TD3 Hyperparameters

Optimizer Adam [66]
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2

TD3 Architecture

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

TD3+BC Hyperparameters λ 2.5 / 0.1
State normalization True

GORL Hyperparameters

Guiding-net learning rate 1e-5
Guiding-net update frequency 500
Guiding-data size 200
Guiding-data mini-batch size 20

Guiding-Net Architecture

Hidden dim 100
Hidden layers 1
Activation function Sigmoid

TABLE VII
HYPERPARAMETERS OF CQL [16] WITH GORL ON LOCOMOTION /

ADROIT DATASETS.

Hyperparameter Value

CQL Hyperparameters

Optimizer Adam [66]
Policy learning rate 1e-4
Mini-batch size 256
Lagrange thresh -1.0
Min q weight 5.0 / 1.0
Min q version 3 / 2

GORL Hyperparameters

Guiding-net learning rate 1e-5
Guiding-net update frequency 200 / 100
Guiding-data size 200
Guiding-data mini-batch size 20

Guiding-Net Architecture

Hidden dim 100
Hidden layers 1
Activation function Sigmoid

REFERENCES

[1] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” CoRR,
vol. abs/2005.01643, 2020.

[2] R. F. Prudencio, M. R. O. A. Máximo, and E. L. Colombini, “A
survey on offline reinforcement learning: Taxonomy, review, and open
problems,” CoRR, vol. abs/2203.01387, 2022.

[3] S. Lange, T. Gabel, and M. A. Riedmiller, “Batch reinforcement learn-
ing,” in Reinforcement Learning, 2012, vol. 12, pp. 45–73.

[4] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
“Scalable deep reinforcement learning for vision-based robotic manipu-
lation,” in Conference on Robot Learning, 2018.

[5] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp
from 50k tries and 700 robot hours,” in International Conference on
Robotics and Automation, 2016.

TABLE VIII
HYPERPARAMETERS OF SAC+BC [13] WITH GORL ON LOCOMOTION /

ADROIT DATASETS.

Hyperparameter Value

SAC Hyperparameters

Optimizer Adam [66]
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Alpha target 0.2
Policy update frequency 2

SAC Architecture

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

SAC+BC Hyperparameters λ 2.5 / 0.1
State normalization True

GORL Hyperparameters

Guiding-net learning rate 1e-5
Guiding-net update frequency 500
Guiding-data size 200
Guiding-data mini-batch size 20

Guiding-Net Architecture

Hidden dim 100
Hidden layers 1
Activation function Sigmoid

TABLE IX
HYPERPARAMETERS OF IQL [17] WITH GORL ON LOCOMOTION /

ADROIT DATASETS.

Hyperparameter Value

IQL Hyperparameters

Optimizer Adam [66]
Policy learning rate 3e-4
Mini-batch size 256
Dropout rate 0.0 / 0.1
Beta 3 / 0.5
Quantile 0.7

GORL Hyperparameters

Guiding-net learning rate 1e-5
Guiding-net update frequency 200 / 1
Guiding-data size 200
Guiding-data mini-batch size 20

Guiding-Net Architecture

Hidden dim 100
Hidden layers 1
Activation function Sigmoid

[6] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and large-
scale data collection,” Int. J. Robotics Res., vol. 37, pp. 421–436, 2018.

[7] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. A. Funkhouser,
“Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning,” in International Conference on Intelligent
Robots and Systems, 2018.

[8] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement
learning framework for autonomous driving,” Electronic Imaging, pp.
70–76, 2017.

[9] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-
D. Lam, A. Bewley, and A. Shah, “Learning to drive in a day,” in
International Conference on Robotics and Automation, 2019.

[10] A. Raghu, M. Komorowski, I. Ahmed, L. A. Celi, P. Szolovits, and
M. Ghassemi, “Deep reinforcement learning for sepsis treatment,” CoRR,
vol. abs/1711.09602, 2017.

[11] N. Prasad, L. Cheng, C. Chivers, M. Draugelis, and B. E. Engelhardt, “A
reinforcement learning approach to weaning of mechanical ventilation
in intensive care units,” in Proceedings of the Thirty-Third Conference

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 12

on Uncertainty in Artificial Intelligence, 2017.
[12] L. Wang, W. Zhang, X. He, and H. Zha, “Supervised reinforcement

learning with recurrent neural network for dynamic treatment recom-
mendation,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2018.

[13] S. Fujimoto and S. S. Gu, “A minimalist approach to offline reinforce-
ment learning,” Advances in Neural Information Processing Systems,
2021.

[14] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine, “Stabilizing off-
policy q-learning via bootstrapping error reduction,” Advances in Neural
Information Processing Systems, 2019.

[15] Y. Wu, G. Tucker, and O. Nachum, “Behavior regularized offline
reinforcement learning,” CoRR, vol. abs/1911.11361, 2019.

[16] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning
for offline reinforcement learning,” Advances in Neural Information
Processing Systems, 2020.

[17] I. Kostrikov, A. Nair, and S. Levine, “Offline reinforcement learning
with implicit q-learning,” International Conference on Learning Repre-
sentations, 2022.

[18] Y. Liu, A. Gupta, P. Abbeel, and S. Levine, “Imitation from observation:
Learning to imitate behaviors from raw video via context translation,”
International Conference on Robotics and Automation, 2018.

[19] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband et al., “Deep q-learning
from demonstrations,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 2018.

[20] Z. Huang, J. Wu, and C. Lv, “Efficient deep reinforcement learning with
imitative expert priors for autonomous driving,” IEEE Transactions on
Neural Networks and Learning Systems, pp. 1–13, 2022.

[21] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International conference on
machine learning, 2017.

[22] T. Wang, Z. Wu, and D. Wang, “Visual perception generalization for
vision-and-language navigation via meta-learning,” IEEE Transactions
on Neural Networks and Learning Systems, pp. 1–7, 2021.

[23] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl:
Datasets for deep data-driven reinforcement learning,” ArXiv, vol.
abs/2004.07219, 2020.

[24] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, 2008.

[25] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in International Conference on Intelligent Robots and
Systems, 2012.

[26] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International Conference on Machine
Learning, 2019.

[27] S. Wang, L. Wu, L. Cui, and Y. Shen, “Glancing at the patch: Anomaly
localization with global and local feature comparison,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021.

[28] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International Conference on Machine Learning, 2018.

[29] J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng,
“Meta-weight-net: Learning an explicit mapping for sample weighting,”
Advances in Neural Information Processing Systems, 2019.

[30] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” J. Comput. Syst. Sci.,
vol. 55, pp. 119–139, 1997.

[31] T. Malisiewicz, A. Gupta, and A. A. Efros, “Ensemble of exemplar-
svms for object detection and beyond,” in International Conference on
Computer Vision, 2011.

[32] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42,
pp. 318–327, 2020.

[33] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International Conference on
Machine Learning, 2018.

[34] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540,
2016.

[35] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” in Proceedings
of Robotics: Science and Systems, 2018.

[36] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel,
A. Srinivas, and I. Mordatch, “Decision transformer: Reinforcement
learning via sequence modeling,” in Advances in Neural Information
Processing Systems, 2021.

[37] S. Emmons, B. Eysenbach, I. Kostrikov, and S. Levine, “Rvs: What
is essential for offline RL via supervised learning?” in International
Conference on Learning Representations, 2022.

[38] X. Wang, S. Wang, X. Liang, D. Zhao, J. Huang, X. Xu, B. Dai, and
Q. Miao, “Deep reinforcement learning: A survey,” IEEE Transactions
on Neural Networks and Learning Systems, pp. 1–15, 2022.

[39] J. Booher, “Bc + rl : Imitation learning from non-optimal demonstra-
tions,” 2019.

[40] A. Nair, M. Dalal, A. Gupta, and S. Levine, “Accelerating online rein-
forcement learning with offline datasets,” CoRR, vol. abs/2006.09359,
2020.

[41] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstra-
tions,” in International Conference on Robotics and Automation, 2018.

[42] O. Nachum, B. Dai, I. Kostrikov, Y. Chow, L. Li, and D. Schuurmans,
“Algaedice: Policy gradient from arbitrary experience,” CoRR, vol.
abs/1912.02074, 2019.

[43] J. Buckman, C. Gelada, and M. G. Bellemare, “The importance of pes-
simism in fixed-dataset policy optimization,” in International Conference
on Learning Representations, 2021.

[44] F. Codevilla, M. Müller, A. M. López, V. Koltun, and A. Dosovitskiy,
“End-to-end driving via conditional imitation learning,” in International
Conference on Robotics and Automation, 2018.

[45] D. Ghosh, A. Gupta, A. Reddy, J. Fu, C. M. Devin, B. Eysenbach, and
S. Levine, “Learning to reach goals via iterated supervised learning,” in
International Conference on Learning Representations, 2021.

[46] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and
P. Sermanet, “Learning latent plans from play,” in Conference on Robot
Learning, 2019.

[47] A. Kumar, X. B. Peng, and S. Levine, “Reward-conditioned policies,”
CoRR, vol. abs/1912.13465, 2019.

[48] R. K. Srivastava, P. Shyam, F. Mutz, W. Jaskowski, and J. Schmidhuber,
“Training agents using upside-down reinforcement learning,” CoRR, vol.
abs/1912.02877, 2019.

[49] B. Eysenbach, X. Geng, S. Levine, and R. Salakhutdinov, “Rewriting
history with inverse RL: hindsight inference for policy improvement,”
in Advances in Neural Information Processing Systems, 2020.

[50] G. Neumann and J. Peters, “Fitted q-iteration by advantage weighted
regression,” in Advances in Neural Information Processing Systems,
2008.

[51] X. B. Peng, A. Kumar, G. Zhang, and S. Levine, “Advantage-weighted
regression: Simple and scalable off-policy reinforcement learning,”
CoRR, vol. abs/1910.00177, 2019.

[52] Q. Wang, J. Xiong, L. Han, P. Sun, H. Liu, and T. Zhang, “Exponentially
weighted imitation learning for batched historical data,” in Advances in
Neural Information Processing Systems, 2018.

[53] X. Chen, Z. Zhou, Z. Wang, C. Wang, Y. Wu, and K. W. Ross, “BAIL:
best-action imitation learning for batch deep reinforcement learning,” in
Advances in Neural Information Processing Systems, 2020.

[54] M. P. Kumar, B. Packer, and D. Koller, “Self-paced learning for
latent variable models,” in Advances in Neural Information Processing
Systems, 2010.

[55] H. Chang, E. G. Learned-Miller, and A. McCallum, “Active bias:
Training more accurate neural networks by emphasizing high variance
samples,” in Advances in Neural Information Processing Systems, 2017.

[56] F. D. la Torre and M. J. Black, “A framework for robust subspace
learning,” Int. J. Comput. Vis., vol. 54, pp. 117–142, 2003.

[57] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and T. M.
Hospedales, “Learning to compare: Relation network for few-shot
learning,” in Conference on Computer Vision and Pattern Recognition,
2018.

[58] T. Munkhdalai and H. Yu, “Meta networks,” in Proceedings of the 34th
International Conference on Machine Learning, 2017.

[59] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in International Conference on Learning Representations,
2017.

[60] M. Dehghani, A. Mehrjou, S. Gouws, J. Kamps, and B. Schölkopf,
“Fidelity-weighted learning,” in International Conference on Learning
Representations, 2018.

[61] Y. Fan, F. Tian, T. Qin, X. Li, and T. Liu, “Learning to teach,” in
nternational Conference on Learning Representationss, 2018.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 13

[62] L. Wu, F. Tian, Y. Xia, Y. Fan, T. Qin, J. Lai, and T. Liu, “Learning to
teach with dynamic loss functions,” in Advances in Neural Information
Processing Systems, 2018.

[63] L. Jiang, Z. Zhou, T. Leung, L. Li, and L. Fei-Fei, “Mentornet: Learning
data-driven curriculum for very deep neural networks on corrupted
labels,” in Proceedings of the 35th International Conference on Machine
Learning, 2018.

[64] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight exam-
ples for robust deep learning,” in Proceedings of the 35th International
Conference on Machine Learning, 2018.

[65] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems, 2019.

[66] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations, 2015.

	Introduction
	Preliminaries
	Method
	The GORL Framework
	Theoretical Analysis of GORL
	Rationality of GORL's Update Mechanism
	Near-Optimality of the Guidance from GORL

	Practical implementations of GORL.

	Experimental Evaluation
	Discussion
	Are adaptive weights better than the fixed weight?
	Does limited expert data benefit vanilla training?
	How does GORL differ from action selection?
	What if we possess more expert data?

	Related Work
	Conclusion
	Appendix A: Theorem Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	Appendix B: Implementation Details
	References

