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Abstract

Knowledge distillation is an effective approach to learn compact models (students)
with the supervision of large and strong models (teachers). As empirically there
exists a strong correlation between the performance of teacher and student models,
it is commonly believed that a high performing teacher is preferred. Consequently,
practitioners tend to use a well trained network or an ensemble of them as the
teacher. In this paper, we observe that an intermediate model, i.e., a checkpoint
in the middle of the training procedure, often serves as a better teacher com-
pared to the fully converged model, although the former has much lower accuracy.
More surprisingly, a weak snapshot ensemble of several intermediate models from
a same training trajectory can outperform a strong ensemble of independently
trained and fully converged models, when they are used as teachers. We show
that this phenomenon can be partially explained by the information bottleneck
principle: the feature representations of intermediate models can have higher mu-
tual information regarding the input, and thus contain more “dark knowledge”
for effective distillation. We further propose an optimal intermediate teacher se-
lection algorithm based on maximizing the total task-related mutual information.
Experiments verify its effectiveness and applicability. Our code is available at
https://github.com/LeapLabTHU/CheckpointKD.

1 Introduction

Knowledge distillation (KD) [1, 2] has been proved to be an effective technique to promote the
performance of a low-capacity model by transferring “dark knowledge” from a large teacher model.
Empirically, there usually exists a strong correlation between the performance of the teacher model
and the student model. For this reason, it is a standard practice to use a well trained network or an
ensemble of multiple well trained networks as the teacher [3, 4, 5], and some researches are attempted
to improve distillation performance via boosting the ensemble performance [6, 7]. The underlying
assumption is that high performing teachers lead to better student models.

However, this viewpoint has been challenged by some recent works [8, 9, 10, 11, 12], in which
it has been observed that a large model capacity gap between the teacher and student may have a
negative effect for knowledge transfer. To address this issue, researchers have proposed to employ an
intermediate-size network [8] or an assistant network [9] to improve the distillation performance in
such scenarios. In [10], a "tolerant" teacher model is designed by using a softened loss function. In
[11], Park et al. proposed to learn student-friendly teacher by plugging in student branches during the
training procedure. Nevertheless, there is no clear theoretical explanation for the gap between teacher
and student, and the search for a substitute teacher is not straightforward.
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Figure 1: A sketch map of the two counterintuitive observations. (a) A weak intermediate model can
serve as a better teacher than the strong fully converged model. (b) A weak Snapshot Ensemble [13]
can serve as a better teacher than the strong Full Ensemble.

In this paper, we make an intriguing observation that further supports the viewpoint that high
performing models may not necessarily be good teachers, but from a novel perspective. Specifically,
we find that an unconverged intermediate model from the middle of the training procedure, often
serves as a better teacher than the final converged model, although the former has much lower
accuracy (as illustrated in Figure 1(a)) . Moreover, a weak snapshot ensemble of intermediate teacher
models along the same optimization path (denoted as Snapshot Ensemble, which is a variant of [13]3)
can outperform the standard ensemble of an equal number of independently trained teacher models
(denoted as Full Ensemble). This surprising phenomenon is illustrated in Figure 1(b), in which a
Snapshot Ensemble can have better distillation performance than a Full Ensemble, although the
accuracy of the former is significantly lower.

To understand the above phenomenon, we show that there is a strong connection between KD and
the information bottleneck (IB) theory [14]. Therein, it has been observed that during the training
procedure of deep neural networks, the mutual information between the learned features F and the
target Y , denoted as I(Y ;F ), increases monotonically as a function of the training epochs; while the
mutual information between F and the inputX , denoted as I(X;F ), grows in the early training stage,
but then decreases gradually after a certain number of epochs. We note that maximizing the mutual
information I(Y ;F ) is helpful for improving the teacher model itself, but not always necessary for
KD, because the ground truth target Y is already included in the KD objective function. In contrast,
the mutual information I(X;F ), to some extent, can be viewed as a type of dark knowledge that is
desired for effective KD. For example, considering an image with a man driving a car, although it
may be uniquely labeled into the “car” category, it still contains features of the “people” category.
Such weak but non-negligible features extracted from the input (measured by I(X;F )) are in fact the
most valuable knowledge for distilling student models. Not surprisingly, most KD algorithms apply a
high temperature to soften the network prediction in order to reveal these information from a teacher
model. However, as shown by IB theory, a fully converged model tends to be overconfident and
may already have collapsed representations for non-targeted classes. Therefore, simply scaling the
temperature can not effectively recover the suppressed knowledge. On the contrary, an intermediate
model, although does not reach its top accuracy due to non-optimal I(Y ;F ), may have a larger
I(X;F ) that benefits KD. This partially explains our observation that intermediate models can be
better teachers. More detailed and formal analyses are provided in the following sections.

Further, we propose an optimal intermediate teacher selection algorithm based on the IB theory. From
the perspective of entropy, the teacher model’s representation can be decomposed as the information
with respect to the input, the output and some nuisance [15]. The proposed algorithm aims to find
the most informative intermediate teacher model which possesses the minimal part of nuisance
on a training trajectory. Experiments verify its applicability in various distillation scenarios. Our
contributions are summarized as follows:

• By designing two exploratory experiments, we observe the phenomenon that intermediate
models can serve as better teachers than fully converged models. This suggests that for

3In this paper,we adopt a normal cosine learning rate instead of the cyclic learning rate.
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effective KD one should not only focus on improving the teacher performance. Instead,
rethinking what the “dark knowledge” is and how to enrich it is highly valuable.

• We demonstrate the connection between our observations and the IB theory, providing a
new perspective for understanding KD and explaining the “dark knowledge”.

• Based on our observations and analyses, a novel simple but effective algorithm is pro-
posed to find the optimal intermediate teacher and achieve better distillation performance.
Experiments validate its effectiveness and adaptability.

2 Related Work

Knowledge distillation. Hinton et al. [2] proposed to transfer “dark knowledge” of a strong capacity
teacher model to a compact student model by minimizing the Kullback-Leibler divergence between
the soft targets of the two models. Since then, many variants of KD methods were proposed to
improve the distillation performance[16], such as Fitnets [17], AT[18], CCM[19], FSP[20], SP[21],
CCKD[22],TC3KD[23]. As a promising technique to improve model generalization, ensemble learn-
ing is often combined with knowledge distillation to improve the distillation performance[3, 11, 4].
In the online knowledge distillation framework[24], efforts were made to boost the distillation perfor-
mance by increasing the diversity between multiple models to improve the ensemble performance
[6, 7]. Most existing methods commonly assumed that a high performing teacher is preferred for KD.
On the contrary, some researchers thought that the model capacity gap between strong teachers and
small students usually degrades knowledge transfer[8, 9, 12, 25]. Some of them have experimentally
verified that poor teachers can also perform KD tasks well[12, 25]. Several methods are proposed to
compress this gap by introducing an assistant network [8, 9] or designing a student-friendly teacher
[10, 11]. However, they did not explain theoretically why gap exists and how gap affects KD. In the
self-distillation framework[26, 27], it is essentially the intermediate model that is used as the teacher,
but no one has a theoretical explanation for why the intermediate model works. In this paper, we link
KD and IB theory through extensive observations and experiments. From the perspective of mutual
information, we explain why intermediate models serve as better teachers than full models, and how
to select an suitable intermediate model to reduce the negative impact of model gap.

Information bottleneck. Tishby et al. [28] firstly proposed the information bottleneck concept and
provided a tabular method to numerically solve the IB Lagrangian (Eq. (3)). Later, Tishby and
Zaslavsky [14] proposed to interpret deep learning with IB principle. Following this idea, Shwartz-Ziv
and Tishby [29] studied the IB principle to explain the training dynamics of deep networks. It has
motivated many studies to apply the IB principle to interpret and improve deep neural networks
(DNNs) [30, 31, 32]. Recently, some researchers introduced IB principle to deep reinforcement
learning successfully [33, 34, 35]. As far as we know, we are the first to introduce IB principle to
interpret knowledge distillation.

3 Exploratory Experiments

In this section, we first formally describe the KD and ensemble KD methods used in the paper, then
design two exploratory experiments to show how intermediate models are surprisingly valuable for
KD, despite their lower accuracies due to incompletion of training.

3.1 Formulation

In the classical KD setting, a fully converged teacher model (full teacher for short) T full is used to
distill a student model S. Define PTfull as the softmax output of teacher model, PS as the softmax
output of student model and Ytrue as the true labels. The student model is trained to optimize the
following loss function:

LKD = αH(Ytrue, PS) + (1− α)H(P τTfull , P τS ), (1)

where H refers to the cross-entropy, α is the trade-off parameter, τ is the temperature. Conducting
KD with an intermediate teacher model T inter, means using T inter instead of T full in Eq. (1).

In the standard ensemble KD setting, there are M(M ≥ 2) full teachers
{
T full
1 , T full

2 , ..., T full
M

}
, which

have the same network structure and training strategy but different initial parameters. The student
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model needs to mimic the average softened softmax output of all teacher models. We call this method
Full Ensemble KD. The loss function is as follows:

LEKD = αH(Ytrue, PS) + (1− α)H(
1

M

M∑
i=1

P τTfull
i
, P τS ). (2)

The Snapshot Ensemble aggregates M(M ≥ 2) intermediate teachers
{
T inter
1 , T inter

2 , ..., T inter
M

}
from

one training trajectory. Conducting KD with a Snapshot Ensemble, means using T inter
i instead of T full

i
in Eq. (2). We call it Snapshot Ensemble KD.

3.2 Experimental design and setups

To examine the common assumption “high performing teachers lead to better student models” and
explore the value of intermediate models, we design two experiments. 1) The standard KD is to train
a full teacher model to distill a student model. What if we adopt the intermediate teacher models
instead? 2) The standard ensemble KD is to train multiple full teacher models independently and
average their output to distill a single student model. What if we adopt the Snapshot Ensemble
instead of the Full Ensemble? We name the first experiment as “Intermediate Teacher vs. Full
Teacher”, and the second experiment as “Snapshot Ensemble vs. Full Ensemble”. For generality,
we conduct experiments on the CIFAR-100 [36], Tiny-ImageNet[37] and ImageNet [38] datasets
with various teacher-student pairs. The distillation loss functions follow Eqs. (1) and (2). For fair
comparison, we search the optimal hyperparameters (i.e., the loss ratio α and the temperature τ ) for
each teacher-student pair. Top 1 accuracy is averagely evaluated in five independent experiments.

The “Intermediate Teacher vs. Full Teacher" experiment is conducted on the CIFAR-100 and
ImageNet. On CIFAR-100, we adopt WRN-40-2[39] and ResNet-110[40] as teacher models, WRN-
40-1[39], ResNet-32[40], and MobileNetV2[41] (width multiplier is 0.75) as student models. We
train each teacher model for 200 epochs to ensure convergence. We save the intermediate models
at the 20th, 40th, ..., 180th epochs as intermediate teachers, and the models at the 200th epoch as
full teachers. On ImageNet, we adopt ResNet-50 [40], and ResNet-34 [40] as teacher models, and
MobileNetV2 [41], and ResNet-18 [40] as student models. We follow the standard PyTorch practice
but train teacher models for 120 epochs to guarantee convergence. We save the intermediate models
at the 60th epoch as intermediate teachers, and the models at the 120th epoch as full teachers. The
“Snapshot Ensemble vs. Full Ensemble” experiment is conducted on CIFAR-100 and Tiny-ImageNet.
We train models for 150 epochs on Tiny-ImageNet to ensure convergence. We save the intermediate
models at the 75th epoch as intermediate teachers, and the models at the 150th epoch as full teachers.
We adopt WRN-40-1[39], ResNet-32[40], and MobilenetV2[41] as student models, and WRN-40-
2[39], and ResNet-110[40] as teacher models. Due to the page limitation, we include the introduction
of the datasets and detailed experimental settings in the Appendix A.1.

3.3 Intermediate Teacher vs. Full Teacher

20 40 60 80 100 120 140 160 180 200

Training epochs of teacher

65

66

67

68

69

70

71

72

73

74

T
es

t a
cc

ur
ac

y 
of

 s
tu

de
nt

WRN-40-2/WRN-40-1
ResNet-110/ResNet-32
WRN-40-2/MobileNetV2
ResNet-110/MobileNetV2

Figure 2: Ablation experiments of the training
epochs of T inter on CIFAR-100.

Firstly, we simply compare the half-way teach-
ers with the full teachers on CIFAR-100 and
ImageNet. It means that the intermediate mod-
els at the 100th epoch are adopted as T inter on
CIFAR-100, the intermediate models at the 60th

epoch are adopted as T inter on ImageNet. The
training cost of all intermediate teachers is only
half that of the full teachers. Table 1 shows
the comparison results. Specifically, on CIFAR-
100, for WRN-40-2, the accuracy of the inter-
mediate model is 13.54% lower than that of the
full model, but its distillation performance is
comparable (0.08% higher) and superior (0.96%
higher). For ResNet-110, the accuracy of the
intermediate model is 13.98% lower than that of
the full model, but its distillation performance
is still comparable (0.01% higher and 0.16%
higher). On ImageNet, the accuracy of the inter-
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Table 1: Comparison results of “Full Teacher vs. Intermediate Teacher”. T full represents a full
teacher. T inter represents a half-way intermediate teacher whose KD performance is underlined. T inter

∗
represents the best intermediate teacher whose KD performance is bold-faced. The numbers in
brackets represent decreases (↓) or increases (↑) in accuracy.

Dataset
Network structure Accuracy of reference models Accuracy of KD

T S T full T inter S T full T inter T inter
∗

CIFAR-100

WRN-40-2
WRN-40-1

76.53 62.99 (↓ 13.54)
70.38 72.68±0.10 72.76±0.24 (↑ 0.08) 73.26±0.03 (↑ 0.58)

MobileNetV2 64.49 68.03±0.34 68.99±0.12 (↑ 0.96) 68.99±0.12 (↑ 0.96)

ResNet-110
ResNet-32

73.41 59.43 (↓ 13.98)
70.16 72.48±0.22 72.49±0.32 (↑ 0.01) 72.63±0.13 (↑ 0.15)

MobileNetV2 64.49 68.63±0.35 68.79±0.17 (↑ 0.16) 69.05±0.27 (↑ 0.42)

ImageNet
ResNet-34 ResNet-18 73.86 66.08 (↓ 7.78) 69.75 70.66 70.86 (↑ 0.20) 70.98 (↑ 0.32)

ResNet-50 MobileNetV2 76.93 69.14 (↓ 7.79) 64.18 66.64 66.79 (↑ 0.15) 66.92 (↑ 0.28)

Table 2: Comparison results of “Full Ensemble vs. Snapshot Ensemble”. EN1 denotes T full
1 +T full

2 .
EN2 denotes T inter

1 +T full
2 . EN3 denotes T inter

1 +T full
1 . The best results of ensemble KD performance are

bold-faced, while the best results of ensemble performance are underlined.

Dataset
Network structure Accuracy of baseline Accuracy of ensemble KD Accuracy of ensemble

T S T S KD EN1 EN2 EN3 EN1 EN2 EN3

CIFAR-100

WRN-40-2
WRN-40-1

76.53
70.38 72.68±0.10 73.05±0.16 73.80±0.31 73.70±0.04

79.44 76.90 76.29
MobileNetV2 64.49 68.03±0.34 68.69±0.32 69.14±0.27 69.20±0.31

ResNet-110
ResNet-32

73.41
70.16 72.48±0.22 72.88±0.14 72.91±0.17 73.03±0.24

76.92 74.28 73.23
MobileNetV2 64.49 68.63±0.35 69.69±0.25 70.46±0.34 70.19±0.25

Tiny-ImageNet WRN-40-2
WRN-40-1

57.61
53.85 55.65 55.96 56.27 56.37

62.81 61.53 60.33
MobileNetV2 53.75 56.53 56.67 57.05 57.28

Average 79.32 74.11 76.04 66.11 66.61 66.63 73.06 70.90 69.95

mediate teachers is about 7.8% lower than that of the full teachers, but their distillation performance
is still comparable or even better.

To further explore the potential of the intermediate models, we conduct ablation experiments of the
training epochs of T inter on CIFAR-100. Figure 2 shows some valuable information. 1) Good and
bad teachers both improve the baseline of student model, which is consistent with [25]. 2) The peaks
of all curves are not the last points, which means that there is always an intermediate teacher that is
better than the full teacher. Table 1 (the last column) shows the KD performance of the best T inter. 3)
Generally, the accuracy curve of student first rises then decreases along with the teacher’s training
epochs. Combing Table 1 and Figure 2, we find a counterintuitive observation:

Observation 1. The distillation performance of an intermediate teacher model can be comparable
with or even better than that of the fully converged teacher model, although the accuracy and training
cost of the former is significantly lower.

3.4 Snapshot Ensemble vs. Full Ensemble

First, we fix the ensemble size to 2 to avoid introducing other factors. We train two full teacher
models, T full

1 and T full
2 , with 200 epochs independently, and save their intermediate models, T inter

1 and
T inter
2 , at the 100th epoch. For the Full Ensemble, we construct an ensemble with T full

1 and T full
2 . For

the Snapshot Ensemble, we build an ensemble with one full teacher model T full
1 and its intermediate

model T inter
1 . We use T full

1 + T full
2 and T inter

1 + T full
1 to represent the Full Ensemble and the Snapshot

Ensemble, respectively. To further explore the intermediate and full models, we add an additional
evaluation object, an ensemble with one intermediate model T inter

1 and one extra full teacher model
T full
2 from another training trajectory. Such combination is represented as T inter

1 + T full
2 .

Table 2 shows two observations: 1) For the ensemble performance, T full
1 + T full

2 > T inter
1 + T full

2 >
T full
1 + T inter

1 is consistently true; 2) For the distillation performance, T inter
1 + T full

1 and T inter
1 + T full

2
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have similar performance, but significantly outperform T full
1 + T full

2 . In average, the accuracy of
Full Ensembles is 3.11% higher than that of Snapshot Ensembles, but the distillation accuracy of
the former is 0.52% lower the latter. Comprehensively considering training cost and distillation
performance, the Snapshot Ensemble (T full

1 + T inter
1 ) is the best choice.

2 4 6 8 10 12 14

Total training cost
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Figure 3: An ablation experiment of ensemble size
(k = 1, 2, 4, 7, 10) on CIFAR-100. We estimate
the training hours on TITAN Xp.

To further verify this cognition, we conduct an
ablation experiment of the ensemble size k on
CIFAR-100. We adopt WRN-40-2/WRN-40-1
as the teacher-student pair. The Full Ensem-
ble is composed of k full teacher models, while
the Snapshot Ensemble is composed of 1 full
teacher model and its k − 1 intermediate mod-
els. For simplicity, the training process of a full
teacher model is averagely divided into k phases
to obtain the k − 1 intermediate models. We
evaluate the test accuracy of distilled students
and the total training cost, which consists of
training teachers and distilling the student. Fig-
ure 3 shows two phenomena. 1) The distillation
performance of the Snapshot Ensemble is sig-
nificantly better than that of the Full Ensemble,
with the same ensemble size k. 2) The training
cost of the Snapshot Ensemble is significantly
lower than that of the Full Ensemble, with the
same ensemble size k. Hence, Snapshot Ensem-
bles can be more economical and efficient in the KD setting. Combining Table 2 and Figure 3, we
obtain the second counterintuitive conclusion:

Observation 2. A stronger ensemble does not always lead to a better distillation. In particular, the
Snapshot Ensemble has worse ensemble performance and lower training cost but better distillation
performance than the Full Ensemble.

4 Knowledge Distillation and Information Bottleneck

We have observed that the student’s accuracy first increases and then decreases while the teacher’s
accuracy increases monotonically, as a function of the training epoch of the teacher (as shown in
Figure 2). In this section, we aim to understand this phenomenon using the IB principle proposed
in [14]. The effect of mutual information on distillation performance is analyzed theoretically and
experimentally, and further verified with class correlation information.

4.1 Connection knowledge distillation with information bottleneck

Tishby and Zaslavsky [14] proposed that layered neural networks form a Markov chain of successive
representations of the input, and explained the optimization goal of DNNs with the IB principle.
They claimed that DNNs tend to obtain an efficient representation of the input, capturing the features
relevant to the output and compressing those irrelevant. Formally, for a DNN, define the input variable
X and desired output variable Y . Any representation of the input F , is defined through an encoder
P (F |X), and a decoder P (Y |F ). The optimization goal of the network can be described as the
following IB trade-off optimization problem [29]:

min
F
{I(X;F )− βI(F ;Y )} , (3)

where I(X;F ) represents the mutual information between X and F , I(F ;Y ) represents the mutual
information between F and Y , β is a positive trade-off parameter. From a perspective of information
theory, knowledge transfer can be expressed as retaining high mutual information between the teacher
and student networks (proposed in VID [42]). Following Eq. (3), we define the representation of the
teacher model Ft, the representation of the student model Fs. The optimization goal of the student
model in KD setting can be described as follows:

min
s
{I(X;Fs)− βI(Y ;Fs)− γI(Ft;Fs)} , (4)

6
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Figure 4: The mutual information curves on the information plane. The red lines represent teacher
models. The dark blue ? represents T full while the light blue ? represents T inter. The gray, dark blue
and light blue lines represent students, distilled students with T full and distilled students with T inter.
The yellow areas are the observation areas. A full teacher compresses I(X;F ) of student, while an
intermediate teacher slows down the compression (a) or even amplifies I(X;F ) of student (b).

where γ is a positive trade-off parameter. I(Ft;Fs) represents the mutual information between the
teacher and the student. Ft and Fs can be quantified by their coordinates: (I(X;Ft), I(Y ;Ft))
and (I(X;Fs), I(Y ;Fs)) on the information plane. Hence, maximizing I(Ft;Fs) can evolve into
minimizing |I(X;Ft)− I(X;Fs)|+ |I(Y ;Ft)− I(Y ;Fs)|. Then, we can reformulate Eq. (4) to

min
s
{I(X;Fs)− βI(Y ;Fs) + γ|I(X;Ft)− I(X;Fs)|

+ γ|I(Y ;Ft)− I(Y ;Fs)|},
(5)

where how to remove the absolute value signs depends on the relative location of the coordinates
(I(X;Ft), I(Y ;Ft)) and (I(X;Fs), I(Y ;Fs)) on the mutual information plane.

4.2 Mutual Information Analysis

In order to explore the role of mutual information in knowledge distillation, we quantitatively analyze
the mutual information curves of different teacher-student pairs. In practice, following [43], we
adopt the test accuracy to quantify I(Y ;F ) and a reconstruction loss to quantify I(X;F ). To get
the reconstruction loss, we connect a decoder following the last convolution layer of the network
model to reconstruct the input X . We adopt WRN-40-2/WRN-40-1 and ResNet110/ResNet32 pairs
on CIFAR-100. We train each teacher model for 200 epochs to get a full model T full and save the
intermediate model T inter at the 100th epoch. Detailed settings are given in Appendix B.1. The
mutual information curves of teacher model, student model, distilled student models with T full and
T inter are shown in Figure 4. Some important observations and inferences are summarized.

1) The trend of all curves is similar to that shown in [29] and consistent with IB principle [14].
That is, I(X;F ) first goes up and then goes down while I(Y ;F ) goes up monotonically. It can be
interpreted as: for I(X;F ), networks first absorb information of the input X and later eliminate part
of the information irrelevant to the target output Y ; for I(Y ;F ), networks continuously accumulate
information relevant to the target output Y .

2) The curve of a large teacher model is usually on the right of the curve of a small student model. It
means a large model generally has greater ability of information representation.

3) The full model T full compresses more I(X;F ) but retains more I(Y ;F ) than the intermediate
model T inter. That is to say, a full model may discard more information of non-target classes from X .

4) The student models distilled with T full further compress I(X;F ) (the dark blue curves are on the
left of the gray curves in Figure 4), while those distilled with T inter slow down the compression of
I(X;F ) (the light blue curve in Figure 4(a)) or even amplify I(X;F ) (the light blue curve in Figure
4 (b)). Retaining more I(X;F ) seems to be a key factor to get a competitive performance from T inter.

For a full teacher with a large I(Y ;Ft) but a small I(X;Ft), Eq. (5) is reformulated to

min
s
{(1 + γ)I(X;Fs)− (β + γ)I(Y ;Fs)} . (6)
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(a) Logits; Epoch = 100 (b) Logits; Epoch = 200 (c) Softmax 𝜏 = 5; Epoch = 100 (d) Softmax 𝜏 = 5; Epoch = 200

Figure 5: The heatmaps of class correlation information on the intermediate model (at the 100th

epoch) and the full model (at the 200th epoch) on the CIFAR-100 dataset. (a) and (b) are calculated
with the logits output; (c) and (d) are calculated with the softened softmax output (temperature is 5).
More brightly colored areas mean that the intermediate model has more diversity than the full model.

For a suitable intermediate teacher model with a large I(Y ;Ft) and a large I(X;Ft), Eq. (5) is
reformulated to

min
s
{(1− γ)I(X;Fs)− (β + γ)I(Y ;Fs)} . (7)

Comparing Eq. (6) and Eq. (7), the difference is that a full teacher model accelerates the compression
of I(X;Fs) while the intermediate model alleviates the compression of I(X;Fs). This is consistent
with our 4th observation. Therefore, we can reasonably assume that: more mutual information with
the input data can be the main reason why an intermediate teacher model achieves better distillation
performance than a full teacher model.

Compared with a full model, a suitable intermediate model has more I(X;F ) and less I(Y ;F ),
which means that the intermediate model has more non-target classes information. To do further
analysis, we use heatmaps of cosine similarity to visualize the class correlation information contained
in the intermediate model and the full model. For CIFAR-100, a heatmap is a 100× 100 matrix A,
where each element Aij represents the similarity between corresponding two classes. Specifically, we
represent a class ci by its average logits or softmax output on the test set (a 100-dimensional vector
Vci ) and then calculate the cosine similarity Aij between ci and cj with the following equation:

Aij =
〈Vci , Vcj 〉
‖Vci‖‖Vcj‖

. (8)

Figure 5 shows some heatmaps of cosine similarity on the intermediate model and the full model.
The network structure is WRN-40-2. Comparing Figure 5(a) with (b), we can see that the logits
output of the intermediate model has better diversity than that of the full model. Comparing Figure
5(c) with (d), while using a softened softmax output with a higher temperature can increase some of
the diversity between classes, the intermediate model still shows a wider range of class correlation
information than the full model. Results of the class correlation information further support that a
suitable intermediate teacher has more non-target classes information than a full teacher, which is
consistent with the mutual information analysis.

4.3 Label smoothing regularization and knowledge distillation

The previous work [25] proposed that label smoothing regularization (LSR) can be considered as
an ad-hoc KD with a pre-defined uniform distribution teacher. Mathematically for LSR, a uniform
distribution u is used in place of P τTfull in Eq. (1). We attempt to explore the connection between LSR
and KD from the IB perspective. Obviously, the uniform distribution u has a small I(Y ;Ft) and a
small I(X;Ft). Eq. (5) is reformulated to

min
s
{(1 + γ)I(X;Fs)− (β − γ)I(Y ;Fs)} , (9)

where β − γ must be positive to keep the optimization direction correct. Comparing Eq. (6) and Eq.
(9), if we fix the coefficient of the second term I(Y ;Fs) to be 1, then the coefficient of the first term
is (1 + γ)/(β + γ) in Eq. (6) and (1 + γ)/(β − γ) in Eq. (9). It means that LSR accelerates the
compression of I(X;Fs). In order to verify it visually, keeping the same setting as Figure 4, we add
LSR to the student model and show its mutual information curve on the information plane. As shown
in Figure 6, both the dark blue curve (the normal KD) and the yellow curve (LSR) are on the left of
the gray curve (the student model). It means that both the normal KD and LSR play a similar role to
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Figure 6: The mutual information curves on the information plane. The red curves represent the
teacher model. The gray, dark blue and light blue curves represent the students, distilled students
with full teacher and distilled students with intermediate teacher. The yellow curves represent student
training with LSR. The yellow areas are the observation areas.

compress the student model’s mutual information with respect to input, which supports the view in
[25]. However, there is a big gap between the dark blue curve and the yellow curve, which means
that the normal KD transfers more relevant information with input to the student model than the LSR
does. For the distillation performance, T inter > T full > u is consistent with the amount of I(X;Ft)
of the teacher models, which further supports our view in Sec. 4.2.

5 Optimal Intermediate Model Selection

I(X;F)

I(
Y

;F
)

T: WRN-40-2

T*

Figure 7: An example of selecting the optimal in-
termediate teacher T inter. The red line represents
the normalized mutual information curve of the
teacher model (WRN-40-2) . The blue lines repre-
sent the selecting process.The star ? represents the
optimal intermediate teacher T ∗ whose representa-
tion maximizes {I(X;F ) + I(Y ;F )}.

As shown in Figure 2 and Figure 4, how to cap-
ture the optimal intermediate model is a non-
trivial problem. An empirical conclusion is that
a good intermediate model needs delicate trade-
off between I(X;F ) and I(Y ;F ). From the
point of information entropy, the representation
F of model consists of information concerning
the inputX , the output Y and nuisance Z which
is irrelevant to the task [15]. A formal descrip-
tion of the entropy of F is:

H(F ) = I(X;F ) + I(Y ;F ) + Z. (10)

To reduce the nuisance Z and get a more infor-
mative intermediate teacher model, we solve the
following optimization problem:

max
F
{I(X;F ) + I(Y ;F )} , (11)

where F belongs to the set of representations
in intermediate teacher models. Figure 7 is an
example of the selecting process. The optimal
solution is usually located in the upper right
corner of the information plane. Based on the
selecting strategy, we propose an algorithm to
find the optimal intermediate teacher for effec-
tive distillation as shown in Algorithm 1. Note that the value of mutual information I(X;F ) and
I(Y ;F ) is normalized to ensure the scale matching. Obtaining the optimal intermediate teacher
model, standard KD or other mainstream KD methods can be conducted as usual.

To verify the superiority of the optimal intermediate model selection strategy, we conduct comparison
experiments on the CIFAR-100 dataset. We keep the same experimental settings as in Sec. 3.3,
but save teacher’s checkpoints every 10 epochs. For each checkpoint, the information theoretic
quantities I(X;F ) and I(Y ;F ) are estimated as in Sec. 4.2. Then, we normalize I(X;F ) and
I(Y ;F ), and draw the mutual information curves. By algorithm 1, the optimal intermediate teacher
models T ∗ of WRN-40-2 and ResNet-110 are selected at the 160th and 120th epochs respectively. An
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Algorithm 1 Distillation with the optimal intermediate teacher.
1: Train a teacher model T from scratch and save its checkpoint Ti every M epochs;
2: Calculating the normalized I(X;F ) and I(Y ;F ) of each Ti;
3: Draw the mutual information curve of T ;
4: Find the optimal T ∗ which has the representation that maximizes {I(X;F ) + I(Y ;F )};
5: Take T ∗ as the teacher model to do distillation.

Table 3: KD Results of the optimal intermediate models on CIFAR-100. The intermediate teacher
models are selected at different epochs. The best results are bold-faced.

Network structure Accuracy of T&S KD accuracy of different intermediate teachers

T S T S T 0.3 T 0.5 T 0.7 T full T ∗

WRN-40-2
WRN-40-1

76.53
70.38 72.34±0.10 72.76±0.24 73.08±0.05 72.68±0.10 73.26±0.03

MobileNetV2 64.49 68.21±0.33 68.99±0.12 68.54±0.07 68.03±0.34 68.58±0.34

ResNet-110
ResNet-32

73.41
70.16 70.74±0.18 72.49±0.32 72.46±0.30 72.48±0.22 72.63±0.13

MobileNetV2 64.49 67.84±0.26 68.79±0.17 69.01±0.20 68.63±0.35 68.99±0.33

Average 74.97 67.38 69.78 70.76 70.77 70.46 70.87

empirical conclusion is that the optimal intermediate model for each teacher model may be different.
To evaluate the distillation performance of T ∗, we pick out models at the 60th, 100th, 140th, 200th

epoch, which are denoted by T 0.3, T 0.5, T 0.7 and T full as baselines. We adopt the same standard KD
method [2] but different intermediate models as teachers. Table 3 shows that T ∗ has the best average
performance, which validates the effectiveness and adaptability of our selection strategy. In addition,
T 0.7 and T 0.5 also have better average performance than T full. If you think that selecting the optimal
intermediate model is tedious, the half-way checkpoint may be your prefer.

6 Conclusion and Limitations

In this paper, we made an observation that an intermediate model can have richer “dark knowledge”
than a fully converged model, and employed the IB principle to partially interpret this phenomenon.
We argue that over-training of the teacher model results in the suppression of class correlation
information, leading to degradation of the distillation performance. As a result, training a fully
converged teacher may not be the optimal choice, especially under resource-limited circumstances.
To save training cost, we empirically suggest that the half-way teacher model can suffice. To achieve
better distillation, we further proposed an optimal intermediate model selection algorithm to find the
appropriate intermediate teacher. Furthermore, this work implies a more economical and efficient
way to construct a snapshot ensemble with several intermediate models from the same training
trajectory instead of the standard ensemble with independently full-trained models. This technique
can significantly improve the ensemble model’s distillation performance and reduce the training cost.

Our study also has some limitations. First, the selection of an optimal intermediate model considers
the information entropy of the teacher but ignores the variation of the student structures, which can
not ensure the optimal KD performance for all teacher-student pairs. Second, how to choose the best
intermediate teacher model for a specific structure of student is still a challenging problem.
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A Exploratory experiments

A.1 Datasets and experimental settings

The “Intermediate Teacher vs. Full Teacher” experiment is conducted on the CIFAR-100 [36] and
ImageNet [38] datasets. The CIFAR-100 contains 50,000 training images with 500 images per class
and 10,000 test images with 100 images per class, and comprises 32 × 32 pixel RGB images with
100 classes. The ImageNet dateset contains 1.2 million images for training and 50,000 for validation
from 1,000 classes.

On CIFAR-100, we use a standard data augmentation scheme [44], in which the images are zero-
padded with 4 pixels on each side, randomly cropped to produce 32 × 32 images, and horizontally
mirrored with probability 0.5. WRN-40-2 [39] and ResNet-110 [40] are adopted as teacher models,
while WRN-40-1 [39], ResNet-32 [40], and MobileNetV2 [41] are adopted as student models. In this
paper, we use MobileNetV2 with its width multiplier set to 0.75. We train each teacher model for
200 epochs with batch size 128, cosine learning rate schedule [45] gradually decaying from 0.1 to 0,
weight decay 5e-4, and SGD optimizer with momentum 0.9. We save the intermediate models at the
20th, 40th, ..., 180th epoch as “Intermediate Teachers”, and the final models at the 200th epoch as
“Full Teachers”.

On ImageNet, we adopt MobileNetV2 [41], ResNet-18 [40] as student models and ResNet-50 [40],
ResNet-34 [40] as teacher models. We follow the standard PyTorch practice but train teacher models
for 120 epochs. The 120th checkpoints are taken as the full teachers while the 60th checkpoints are
adopted as the intermediate teachers.

We distill the student models by the same way as [2] except for the hyperparameters. To perfectly
show the performance of each network, we search for the optimal hyperparameters (i.e., the loss ratio
α and the temperature τ ) to each teacher-student pair as shown in Table 4. Generally, intermediate
models at the later training stages tend to choose a larger τ and a smaller α.

The “Snapshot Ensemble vs. Full Ensemble” experiment is conducted on CIFAR-100 [36] and
Tiny-ImageNet [37]. Tiny-ImageNet consists of a subset of ImageNet dataset. There are 100,000
images for training and 10,000 images for validation from 200 classes. All images are 64 × 64
colored ones. Some different settings on Tiny-ImageNet include: 1) we train models for 150 epochs
on Tiny-ImageNet while 200 epochs on CIFAR datasets; 2) we add a stride of 2 to the first layer of
the CIFAR models, in order to downsample the images to the same 32× 32 resolution, following
[13]. For fair comparison, we also use grid search to find the best value of hyperparameters τ and α,
as shown in Table 5.

A.2 More visual comparison results

Figure 3 only shows the results of total computational cost (teacher and student together) vs. distilla-
tion performance between Snapshot Ensemble and Full Ensemble. To show it more comprehensively,
we add to show the results of total computational cost vs. distillation performance for five teacher
models (T inter, T full, T ∗, T inter

1 + T full
1 , T full

1 + T full
2 ) on four teacher-student pairs. As shown in

Figure 8, the curve of T inter is on the upper left of that of T full, and the curve of T inter
1 + T full

1 is on
the upper left of that of T full

1 + T full
2 . In Figure 8, “upper left” means lower computational cost but

higher distillation performance. T ∗ has higher distillation performance than T full
1 and T inter

1 , but T ∗
needs higher computational cost (though lower than T full

1 + T full
2 ). The current optimal intermediate

model selection algorithm needs additional computational cost, which means that there is plenty of
room for improvement. A practical suggestion is: in the case of limited computing resources, the
half-way teacher model (i.e., T 0.5) can suffice for KD. In the case of sufficient computing resources,
the optimal intermediate model selection algorithm can be used to find an appropriate checkpoint to
achieve better performance.

A.3 Effects of early stopping

In the paper, we training teacher models for a fixed number of epochs, such as 200 epochs on CIFAR,
120 epochs on ImageNet. In practice, the early stopping strategy is often used to avoid model
overfitting. To investigate the possible effects of early stopping, we adopt the general early stopping
strategy (patience=10) in the training process. We show the training curves of all teacher models
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Table 4: Optimal hyperparameters (temperature τ and ratio α) for all used intermediate and full
teachers on CIFAR-100 and ImageNet.

Dataset
T WRN-40-2 ResNet-110

S WRN-40-1 MobileNetV2 ResNet-32 MobileNetV2

CIFAR-100

T 20
τ=5, α=0.7 τ=5, α=0.7 τ=5, α=0.9 τ=5, α=0.7

T 40
τ=5, α=0.7 τ=5, α=0.7 τ=5, α=0.9 τ=5, α=0.7

T 60
τ=5, α=0.7 τ=5, α=0.7 τ=5, α=0.9 τ=7, α=0.5

T 80
τ=5, α=0.7 τ=9, α=0.5 τ=5, α=0.9 τ=7, α=0.5

T 100
τ=7, α=0.7 τ=9, α=0.5 τ=7, α=0.7 τ=7, α=0.5

T 120
τ=7, α=0.7 τ=9, α=0.5 τ=7, α=0.7 τ=7, α=0.5

T 140
τ=9, α=0.5 τ=9, α=0.5 τ=7, α=0.7 τ=9, α=0.3

T 160
τ=9, α=0.5 τ=9, α=0.3 τ=9, α=0.7 τ=9, α=0.3

T 180
τ=9, α=0.5 τ=15, α=0.1 τ=9, α=0.5 τ=9, α=0.3

T 200
τ=9, α=0.5 τ=15, α=0.1 τ=9, α=0.5 τ=9, α=0.3

Dataset T - S ResNet-34 - ResNet-18 ResNet-50 - MobileNetV2

ImageNet

T 20 τ=1.5, α=0.5 τ=1.5, α=0.7

T 40 τ=1.5, α=0.5 τ=1.5, α=0.7

T 60 τ=1.5, α=0.3 τ=1.5, α=0.5

T 80 τ=2, α=0.3 τ=1.5, α=0.5

T 100 τ=2, α=0.1 τ=2, α=0.5

Table 5: Optimal hyperparameters (temperature τ and ratio α) for Snapshot Ensemble and Full
Ensemble on CIFAR-100 and Tiny-ImageNet.

Dataset
T WRN-40-2 ResNet-110

S WRN-40-1 MobileNetV2 ResNet-32 MobileNetV2

CIFAR-100
Snapshot Ensemble τ=5, α=0.5 τ=7, α=0.3 τ=9, α=0.5 τ=9, α=0.3

Full Ensemble τ=5, α=0.5 τ=20, α=0.1 τ=9, α=0.5 τ=9, α=0.3

Dataset T - S WRN-40-2 - WRN-40-1 WRN-40-2 - MobileNetV2

Tiny-ImageNet
Snapshot Ensemble τ=3, α=0.5 τ=3, α=0.5

Full Ensemble τ=5, α=0.5 τ=5, α=0.5

in Figure 9. Overall, training the teacher models on CIFAR for 200 epochs and ImageNet for 120
epochs does not lead to model overfitting. The optimal checkpoints are located on the left of the
positions of early stopping. Therefore, using the early stopping strategy does not affect the results.

B Mutual information experiments

B.1 Estimation of mutual information

Mutual information is difficult to calculate accurately, especially in the case of unknown joint
probability distribution or continuous random variables. In this paper, we estimate the mutual
information I(X;F ) between input X and representation F with a reconstruction loss following
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Figure 8: Computational cost vs. distillation performance for different teacher models on CIFAR-
100. T inter denotes a half-way teacher. T full denotes a convergent teacher. T inter

1 + T full
1 denotes

Snapshot Ensemble teacher. T full
1 + T full

2 denotes Full Ensemble teacher. T ∗ denotes the optimal
checkpoint obtained by our search algorithm. � denotes WRN-40-2/WRN-40-1. 4 denotes WRN-
40-2/MobileNetV2. 3 denotes ResNet-110/ResNet-32. ◦ denotes ResNet-110/MobileNetV2.
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Figure 9: The training curves of all teacher models. (a) WRN-40-2 and ResNet-100 trained on
CIFAR-100. (b) ResNet-50 and ResNet-34 trained on ImageNet. The red • denotes the position of
early stopping, while the green ? denotes the position of the optimal checkpoints.

[46]. Specifically, we connect a decoder to the last convolution layer of a trained and fixed network
model in order to generate a pseudo input image X . The structure of the decoder is shown in Table
6). Then we train the decoder to convergence with the Adam optimizer and binary cross-entropy loss
between X and X . This reconstruction loss is used to estimate I(X;F ). For the mutual information
I(Y ;F ) between output Y and representation F , we use the trained network model to do inference
on the test dataset, and estimate I(Y ;F ) with the test accuracy.

B.2 More results of class correlation information

The results of heatmaps in Figure 5 show that the appropriate intermediate model has better diversity
than the full model. To clearly display differences of class correlation information between the
intermediate model and the full model, we randomly sample four classes from the test dataset and
calculate the average logits output of each class. Figure 10 shows that the logits output of the
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Table 6: Architecture of the decoder.

Input: 240× 240 / 128× 128 / 64× 64 feature maps

Bilinear Interpolation to 32× 32

3× 3 conv., stride=1, padding=1, output channels=12, BatchNorm+ReLU

3× 3 conv., stride=1, padding=1, output channels=3, Sigmoid

Class label = 1 Class label = 30 Class label = 50 Class label = 90

Figure 10: The average logits outputs of 4 random classes on the intermediate model (at the 100th

epoch) and the full model (at the 200th epoch). The red curves have more peaks and greater variances
than the blue curves, which indicates that T inter has more non-target class information than T full.

intermediate model has more peaks and larger variance than that of the full model. Specifically,
the intermediate model reserves plentiful valuable non-target “misclassifications”, which are mostly
eliminated in the full model. Such non-target information implicitly illustrates certain correlation
among classes thus significantly complements the rigid one-hot label.
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