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Abstract—The black-box nature of deep reinforcement learn-
ing (RL) hinders them from real-world applications. Therefore,
interpreting and explaining RL agents have been active research
topics in recent years. Existing methods for post-hoc explanations
usually adopt the action matching principle to enable an easy
understanding of vision-based RL agents. In this paper, it is
argued that the commonly used action matching principle is
more like an explanation of deep neural networks (DNNs) than
the interpretation of RL agents. It may lead to irrelevant or
misplaced feature attribution when different DNNs’ outputs
lead to the same rewards or different rewards result from the
same outputs. Therefore, we propose to consider rewards, the
essential objective of RL agents, as the essential objective of
interpreting RL agents as well. To ensure reward consistency
during interpretable feature discovery, a novel framework (RL
interpreting RL, denoted as RL-in-RL) is proposed to solve
the gradient disconnection from actions to rewards. We verify
and evaluate our method on the Atari 2600 games as well
as Duckietown, a challenging self-driving car simulator envi-
ronment. The results show that our method manages to keep
reward (or return) consistency and achieves high-quality feature
attribution. Further, a series of analytical experiments validate
our assumption of the action matching principle’s limitations.

Index Terms—Attention map, deep reinforcement learning,
explainability, feature attribution, interpretability.

I. INTRODUCTION

REINFORCEMENT learning (RL) learns to solve sequen-
tial decision-making problems in an interactive environ-

ment. Combined with the powerful approximation capability
of deep neural networks (DNNs), deep RL has soared and
achieved impressive successes in various fields such as video
games [1] and robotics [2], [3]. However, the black box
nature of DNNs makes deep RL harder to understand, while
trust and reliability are critical concerns in real-world appli-
cations, especially for high-stake scenarios like autonomous
driving [4], [5] and medical care [6]. Hence, exploring the
underlying decision-making process and its interpretation (or
explanation) 1 will greatly contribute to more applicable RL.
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1Since no consensus about the nomenclature has been reached yet [6], we
use interpretation and explanation as synonyms in this paper.

As far as we know, plenty of methods attempt to explain
vision-based RL agents from the perspective of feature at-
tribution [7]–[9]. For example, the embedding-based methods
[10] analyze high-dimensional feature maps, and the attention-
based methods [11] learn saliency maps in the agent’s training
process. However, the former approach may be intuitively
complex and the latter one does not apply to the post-
hoc explanation. Other methods that manage to discover the
interpretable features in an easy-to-understand way without
revising the DNN’s architecture (such as the perturbation-
based [12], gradient-based [13], and supervision-based [14]
methods) generally build on the same action matching prin-
ciple. Specifically, they usually attribute features of states by
ensuring action consistency when explaining a pretrained RL
agent. However, we have some concerns about this commonly
used principle since RL agents’ intrinsic goal is to achieve the
maximum accumulated rewards instead of action cloning.

Considering the situation when agents take slightly different
actions but intrinsically aim at the same behavior to get a
certain reward, the attentive features discovered by action
matching can be redundant or even misleading. For example,
as illustrated in Figure 1(a), the agent in a driving task gets
positive rewards when successfully avoiding oncoming cars.
In the state st, the agent (the green car) needs to avoid
collision with the oncoming blue car. However, the actions
at “moving left by 0.12” in Figure 1(a.1) and “moving left by
0.15” in Figure 1(a.2) would have obvious differences, while
their essence is the same “avoidance” behavior. In this case,
the behavior is truly represented by the reward instead of the
action. Action matching may learn some redundant attention
to keep the identical speeds or angles in the action, which can
be seen as a kind of “overfitting”.

Considering another situation when agents take the same
action but get different rewards, the action matching methods
may fail to discover the truly interpretable features. For
example, as illustrated in Figure 1(b), the agents take the
same action “moving right” under the same state. Then the
agent in the catching-ball task gets a positive reward, while
the agent in the avoiding-ball task gets a negative reward.
Intuitively, the agent in Figure 1(b.1) may take the action
because it intends to catch the middle ball, and the agent in
Figure 1(b.1) may move right because it attempts to avoid the
left ball. However, the action matching methods would learn
the same attentive features because of the same action, and
the task-related explanation may not be truly discovered.
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Fig. 1. Examples of action matching’s limitations. (a) Actions moving left
by 0.12 and by 0.15 represent the same behavior “avoiding collision” and get
the same reward. (b) The same action leads to different rewards when the
tasks differ, but action matching methods would give the same explanation.

In this paper, we argue that action matching, the classical
setting of RL explanation, may have limitations because it
simply assumes that the agent’s actions fully represent the
underlying decision-making logic. On the contrary, for deep
RL, it is suggested that merely matching actions to attribute
features of states is equal to explaining the DNN’s forward
process. It barely focuses on the RL agents or the controlling
tasks and only relates to the DNN’s architectures and parame-
ters. Considering that the agent’s training objective lies in the
reward (or return) instead of the action, we assume that action
matching cannot truly interpret the agent as it diverges from
RL’s reward-oriented motivation. In fact, plenty of methods
have realized the limitations of action-related explanation and
attempt to understand RL agents by exploring causal effects
on rewards [15]. However, they are usually not as visually
understandable as the feature attribution methods because of
the structural causal equations.

Therefore, we attempt to take the causal effects into con-
sideration when visualizing feature attribution. Unlike prior
methods discussing how agents take actions, we aim to focus
on the causal effect of actions and consider the agent’s reward-
driven behaviors. Our proposed method leverages reward
consistency to explore such causal effects, which means that
the interpretation model needs to discover the most salient
features in the state that affect the agent’s obtained reward. To
solve the gradient disconnection from actions to rewards when
the agent interacts with the environment, an RL framework is
adopted to achieve reward consistency (such RL interpreting
RL model is denoted as RL-in-RL). Our main contributions
are summarized as follows: 1) The causal effect on rewards
during states’ feature attribution is firstly explored; 2) A novel
framework is proposed where the interpretation problem is
modeled as a new RL task; 3) We analyze the limitations of
the conventional action matching principle and introduce the
concept of reward matching. To substantiate these novel ideas
and methodologies, we conduct comprehensive experiments.
The results and detailed discussions underscore the signifi-
cance and effectiveness of our proposed method, pointing out
that the action matching principle in post-hoc explanations can
lead to irrelevant and non-causal attention.

II. RELATED WORK

In this section, we first review the mainstream methods
of explaining vision-based RL agents. Existing works that
aim to discover how inputs influence agents’ decisions can
be partitioned into five main categories: embedding-based
methods, attention-based methods, gradient-based methods,
perturbation-based methods, and supervision-based methods.
Then, since this paper focuses on a post-hoc scenario in
which an interpretation model learns the feature attribution
of a pretrained and static policy, applications of these main
methods for post-hoc explanations are summarily discussed.
Besides those works that explain RL agents mainly from the
perspective of feature attribution, the causality-based interpre-
tation methods that consider causal effects are also reviewed.

Embedding-based methods. Methods in this category gen-
erally focus on visualizing high dimensional data with a
commonly used non-linear dimensionality reduction method,
t-SNE [16]. A simple idea is to directly draw a t-SNE map
where perceptually similar states are demonstrated as points in
the vicinity [10], [13], [17]. A recent work uses 1D t-SNE to
design the DRLViz model [18], which is able to re-order the
memory (i.e., t-SNE projection of absolute values) and identify
decisive sub-sets. In addition, the distances among points can
also be related to the transition probabilities [19]. However,
t-SNE maps are intuitively complex for those without back-
ground knowledge of machine learning.

Attention-based methods. Agents in this category learn
to draw saliency maps without degrading their performance.
Self-attention modules [11], [20] which lay strong emphasis
on relative areas of inputs are applied to augment the actor.
Key-value attention structures [21], [22] are employed to
learn interpretable policies by exploring how they look in the
whole environment. Varieties of attention-based interpretation
methods are newly proposed, such as TAFA [23], BR-NPA
[24] and Attentional Bottleneck [25]. However, these methods
usually retrain the agent models and thus are inapplicable to
structure-unchangeable or pretrained models.

Gradient-based methods. The main idea underlying
gradient-based methods is that the most salient features in
the inputs contribute the largest gradient values. A typical
approach is Jacobian saliency maps [26], where spatial attri-
butions in input states are computed as the Jacobian through
back-propagation. In addition, there are several works modify-
ing gradients to attain more meaningful and valuable saliency
maps, such as LRP [27], DeepLIFT [28], Smoothgrad [29],
Grad-CAM [30], and SEG-GRAD-CAM [31]. Gradient-based
methods uncover the dependencies between inputs and out-
puts simply and efficiently, but may not produce trustworthy
interpretations as the manifold is changed [12].

Perturbation-based methods. These methods aim to mea-
sure relative feature importance through perturbing the inputs,
like applying occlusion masks and surrogating parts of the
images. For example, RISE [32] measures the feature impor-
tance by occluding inputs with random mask patterns, and
Extremal Perturbation [33] searches for a mask that exerts
the most prominent impact on the outputs for a certain area.
Recent works include FIDO [34], OPPSD [35], and PERT
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[36]. For inputs like images and videos, perturbation-based
methods illustrate the effects of distinct parts in the form of
saliency maps [37], [38], but the illustration is usually coarse.

Supervision-based methods. This category of interpreta-
tion methods is first developed in supervised deep learning.
These works aim to optimize for the salient regions using
gradient descent techniques [33], [39], [40]. On this basis,
some research has been developed to interpret RL in such
a supervision-based way, like SSINet [14] and TSCI [41].
The optimization goals of SSINet are action matching and
attention sparsity, while TSCI explores temporal-spatial causal
interpretations for the sequential decision-making process. In
addition, a self-supervised method has been recently proposed
to use visual attention as an inductive bias [42].

Post-hoc Explanation Methods. In vision-based RL tasks,
the objective of post-hoc explanations is to identify the salient
features within state inputs. Attention deemed valid underlines
features that directly influence the behaviors of the agent.
Existing methods for post-hoc explanations predominantly
fall into three categories: gradient-based, perturbation-based,
and supervision-based approaches. Each carries its unique
complexities and application conditions. The gradient-based
methods involve computing the gradients of features that are
notably prominent to the agent’s current action output [26].
Perturbation-based methods assess the fluctuation in the action
output following the perturbation or removal of certain input
information [16], [39]. Supervision-based methods employ an
attention mask overlay on the input and instruct its action
output to align with the original action at every step [14]. It is
worth noting that embedding-based methods, due to their high
dimensionality, and attention-based methods, which function
only during training, are less commonly used. Fundamentally,
these three methodologies are grounded in the assumption that
the RL agent can be comprehensively interpreted via action
matching. This implies the identification of attention regions
that significantly influence the agent’s actions.

From the perspective of model understanding, matching
actions is equal to matching the DNN’s output in deep RL.
Therefore interpretation methods built on action matching are
factually explaining the DNN itself. It works well in super-
vised tasks when the DNN serves as a classifier, whose ob-
jective is to make its outputs imitate the true labels. However,
in RL tasks, there is no label for action outputs. The DNN, as
an RL agent, is trained in a reward-driven way. In this case,
using action matching to interpret the agent does not coincide
with its intrinsic goal since actions only indirectly illustrate
the agent’s reward-driven behaviors. It is, instead, the rewards
that directly represent the agent’s behaviors. In fact, plenty of
research in RL causality has emphasized the role of rewards by
exploring structural equations of states, actions, and rewards
[43]–[47]. Likewise, we believe that the exploration of reward-
oriented effects can reasonably help post-hoc interpretation
methods attend to more essential features.

Causality-based methods. Causality is a crucial topic in the
explanation of RL agents [43]–[45]. It remains unclear how
agents can dynamically explore new environments and curtail
the number of possibly feasible causal structures [46]. Hence,
it has become a popular topic whether RL agents can acquire

causal knowledge. Structural causal models [47], assisted
by structural equations, are usually adopted to represent the
causal relationships. Furthermore, the Action Influence [48]
model, which includes actions in causal relationships, uses
the state-action ensemble and structural equations to represent
itself. To more effectively learn opportunity chains, the Distal
Explanation [49] model utilizes a recurrent neural network
for analysis and decision trees to promote the accuracy of
the prediction. Another work named RAMi [50] is based on
the Information Bottleneck [51] principle and aims at the
Minimum Description Length. Generally speaking, existing
causality-based methods can reveal the inner causality but
usually cannot be visualized in a user-friendly way when it
comes to understanding vision-based RL agents.

III. PRELIMINARIES

Reinforcement Learning (RL) refers to a general class of
algorithms where the agent learns by interacting with the
environment. Specifically, the agent takes an action at in
a state st and receives a scalar reward rt. Meanwhile, the
environment E changes to the next state st+1. The RL problem
is generally modeled as a Markov decision process (MDP). An
MDP can be described as a tuple M = (S,A, T, d0, R, γ),
where S is the state space, A is the action space, T defines
a transition function of the environment T (st+1|st, at), d0 is
the initial state distribution d0(s0), R defines a reward function
R(st, at), and γ ∈ (0, 1] is a discount factor [52], [53].

The final goal of an RL problem is to learn a policy,
which defines a distribution over actions conditioned on states,
π(at|st). The trajectory is a sequence of states and actions of
length H , given by τ = {s0, a0, · · · , sH , aH}. The trajectory
distribution pπ for a given MDP M and policy π is:

pπ(τ) = d0(s0)

H∏
t=0

π(at|st)T (st+1|st, at). (1)

The learned policy (i.e., the agent) aims at maximizing the
return which means the expected sum of discounted future
rewards. The RL objective J(π) over a horizon H is:

J(π) = Eτ∼pπ(τ)

[
H∑
t=0

γtR(st, at)

]
. (2)

In this paper, agents are trained with one of the mainstream
methods, the proximal policy optimization (PPO) algorithm
following [14]. As a policy gradient method in the actor-critic
version, PPO uses trust region update to improve a general
stochastic policy with gradient ascent [54].

IV. METHOD

In this section, we first present a reward-oriented interpreta-
tion method in Section IV-A to leverage reward consistency for
interpretable feature discovery. However, gradient disconnec-
tion from actions to rewards blocks its optimization. Hence,
an RL-based framework that achieves reward consistency is
further proposed in Section IV-B. Last but not least, the
extended version of our method for multi-step rewards (or
return) consistency is presented in Section IV-C.
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Fig. 2. (1) The gray box illustrates the architecture of our reward-oriented interpretation method. A DNN including an encoder fe and a decoder fd is adopted
to learn the mask mt and attentive state s̃t. (2) To conduct reward matching, the pretrained policy πpre takes the actions at and ãt respectively form the
primitive state st and attentive state s̃t, and then the environment E gives the corresponding rewards rt and r′t. (3) However, the reward matching based on
supervised learning is blocked by the disconnected gradient backward. Therefore, we model the reward matching problem as an RL task as in Figure 3.

A. Interpretation with Reward Consistency

Causality is the generic relationship between an effect and
the cause that gives rise to it. For the interpretation problem,
the state and policy can be taken as the “cause” while the
reward is the “effect”. Prior research explores causality mainly
by the structural causal model (SCM) [55]. An SCM usually
aims to construct a causal graph by structural equations.
Causal effects in our interpretation problem can be described
as r = G(s|π,R). G refers to a pre-defined causal structure
that explicitly expresses the relationships among variables.
However, such a causal structure is usually unknown, and
designing it can be a great challenge especially under complex
tasks or with ambiguous effects.

As DNNs achieve superior performance in a variety of
learning tasks with their powerful representation ability [56]–
[58], we consider using a DNN to discover the causal effects.
Note that the objective is r = G(s|π,R), which can be
seen as exploring what features in states affect the agent’s
obtained rewards, given the policy π and reward function R.
Hence, we design a mask-based architecture as an implicit
causal structure to leverage reward consistency. As illustrated
in Figure 2, the encoder fe extracts high dimensional features
of the input state st, and then the decoder fd learns a mask
mt. The mask displays the attentive feature importance for
st ∈ Rh×w×c, and mt ∈ [0, 1]h×w×1. In a frame, h is the
height, w is the width, and c is the channel. Next, multiplying
the original state by the mask results in the attentive state s̃t.
We adopt the input state and the attentive state to get the action
at and the attentive action ãt respectively by the pretrained
policy. The environment gives rewards (rt and r′t) according
to different actions. The process can be formulated as follows:

rt = R
(
st, πpre(st)

)
, (3a)

r′t = R
(
st, πpre(s̃t)

)
, (3b)

s̃t = st · fd
(
fe(st)

)
. (3c)

We match rt and r′t to learn the attentive state which
highlights features that directly give rise to the current reward.
The goal of this optimization problem is to ensure reward
consistency by minimizing |rt − r′t|.

An intuitive way to achieve this reward matching is the
direct gradient backward as supervision-based action matching
does. Specifically, after the attentive state s̃t is obtained,

action matching simply calculates a matching loss between the
attentive action ãt and the original action at. For example, the
loss is L = ∥at − ãt∥2. The projection from states to actions
through the pretrained policy is continuous and derivable.
Thus, direct gradient backward works well. However, when
it comes to rewards, such a matching way meets a setback, as
shown in Figure 2. The environment gives the reward when
receiving the action. There exist internal transition functions
in the environment which work in a black-box and end-
to-end way. The reward function R is unknown and non-
differentiable, which makes the direct gradient backward from
rewards to actions impossible. Therefore, the classical super-
vised learning method doesn’t apply to this reward-related in-
terpretation method. On the other hand, gradient disconnection
between actions and rewards never hinders the optimization
process in RL problems, which provides a feasible solution to
our network’s optimization problem.

B. The RL-in-RL Model

Since the internal reward function R is non-differentiable,
reward matching cannot be conducted in the supervised learn-
ing way. Therefore, We model the optimization problem in
Section IV-A as a reinforcement learning task, which considers
reward matching as part of the environment dynamic and thus
avoids the gradient disconnection. Accordingly, a new policy
is learned to interpret the pretrained policy via maximizing the
newly designed rewards where the reward matching objective
is implicitly incorporated. Such an RL interpreting RL model
is referred to as the RL-in-RL model.

(b)

𝑠, 𝑟

𝑎

(a)

𝜋𝑝𝑟𝑒
E 𝜋

𝑠, ǁ𝑟

𝑎

𝜋𝑝𝑟𝑒E

Fig. 3. The interaction process. (a) illustrates how πpre interacts with the
environment during pretraining. (b) illustrates the interpretation task where
reward matching is modeled as an RL problem. The defined RL-in-RL policy
π̃ corresponds to the gray box in Figure 2. The reward r̃ is given jointly by
the environment E and the pretrained policy πpre.

Provided that the pretrained policy πpre is given, we denote
its state space as S, its action space as A, and the environment
as E. Given the current state st ∈ S, the action at ∈ A
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is deterministically decided by at = πpre(st). Note that both
deterministic and stochastic policies are utilized to generate
deterministic actions during the inference process, following
the common practice for RL agents [54], [59]–[61]. The
environment E receives the action at and gives the reward
by its reward function rt = R(st, at). The goal of πpre is to
get the maximum accumulated rewards from the environment
E. Figure 3(a) illustrates the RL interaction process of πpre.

For the RL-in-RL model, our goal is to learn a new
interpretation policy π̃. The state space S and action space
A keep consistent with the pretrained policy πpre. The RL-
in-RL policy takes the action ãt = π̃(st). For the current
interpretation task, the goal changes to achieving the maximum
consistency between rewards from the at = πpre(st) and from
the ãt = π̃(st). That is to say, for the same state st and
a well-trained π̃, the environment E gives the same reward
when receiving the action decided by the interpretation policy
π̃ as that when receiving the action decided by the pretrained
policy πpre. The new reward r̃t for the RL-in-RL model can
be formulated as follows:

r̃t = R̃
(
st, ãt

)
= −D

(
R
(
st, at

)
, R

(
st, ãt

))
= −D

(
R
(
st, πpre (st)

)
, R

(
st, π̃ (st)

))
,

(4)

where D, utilized as the Mean Squared Error (MSE) in our
experiments, measures the distance between two variables.
Figure 3(b) illustrates the interaction process of RL-in-RL.
Note that the current reward r̃t is jointly given by the envi-
ronment E as well as the fixed policy πpre. The gray box in
Figure 3b corresponds to π̃ in Figure 2, which means:

π̃(st) = πpre
(
st · fd

(
fe(st)

))
. (5)

When calculating r̃t as in Equation (4), the input states of
πpre and π̃ need to be exactly identical, otherwise matching
the corresponding rewards becomes misleading. Meanwhile,
minor differences between at and ãt can lead to huge pixel-
wise differences in the next state st+1. It’s hard to obtain the
same actions from attentive states as from the original states,
and exact action matching is not our goal either. Therefore,
to keep the same input states of πpre and π̃ at every step
(st, ãt, r̃t), we consider that one trajectory only contains one
step in RL-in-RL. That is to say, the environment E resets
and gives initial states after every interaction. The objective
of this RL task can be formulated as follows:

JRL = Eπ

[
R̃(st, ãt)

]
. (6)

Adopting RL algorithms to maximize the above objective
ensures that the mask learns decisive features in states but
may also lead to attention degradation. That is to say, all
the features could share the same importance, i.e., the maxi-
mum attention value 1. In that circumstance, we can get the
maximum r̃ but still have no idea what features matter. To
solve such attention degradation, an auxiliary task is trained
along with the RL interpretation task, in order to encourage the
learned mask mt to be as sparse as possible. In other words,

the number of features with high attentive importance needs
to be possibly small. The objective of the auxiliary task is:

Jaux = −∥mt∥1 = −
∥∥fd

(
fe(st)

)∥∥
1
, (7)

where ∥·∥1 denotes the L1-norm. The final objective contains
the RL term and auxiliary term, shown as follows:

J = JRL + αJaux = Eπ

[
R̃(st, ãt)

]
− α

∥∥fd
(
fe(st)

)∥∥
1
, (8)

where α is a positive scalar controlling the sparseness of
the mask. The pseudo-code of training is summarized in
Algorithm 1. Note that the encoder in RL-in-RL shares the
feature extractor parameters of the pretrained policy to speed
up convergence and prevent overfitting [14].

Algorithm 1 The RL-in-RL Model
The fixed pretrained policy πpre to be interpreted;
The reward function R(st, at) by environment E;
Load fe and initialize fd;
for epoch = 0, 1, ... , until convergence do

for i = 1, 2, ... , K do
Initialize state s0;
Get ã0 = πpre

(
fe
(
fd(s0)

)
· s0

)
;

Get r̃0 = −D
(
R
(
s0, πpre (s0)

)
, R

(
s0, ã0

))
;

Save τ i = (s0, ã0, r̃0);
end for
Update fd by PPO algorithm to maximize the objective
J in Equation (8);

end for

C. The RL-in-RLK Model

As a first step towards using reward consistency to inter-
pret RL agents by feature attribution, we mainly focus on
the one-step reward matching for a fair comparison, since
existing action matching methods are generally limited to one-
step action matching. Nevertheless, RL-in-RL is compatible
with the one-step reward as well as multi-step rewards (or
returns) consistency. To adopt the multi-step version of RL-
in-RL (denoted as RL-in-RLK), the defined reward function
in Equation (4) is reformulated as follows:

r̃Kt = −D
(K−1∑

i=0

γiR
(
st+i, at+i

)
,

R
(
st, ãt

)
+

K−1∑
j=1

γjR
(
s
′

t+j , a
′

t+j

))
,

(9)

where st+i+1 = T (st+i, at+i) and at+i = πpre(st+i) are in
the pretrained behavior trajectory, s

′

t+1 = T (st, ãt), s
′

t+j+1 =

T (s
′

t+j , a
′

t+j), and a
′

t+j = πpre(s
′

t+j) are in the interpretation
behavior trajectory, γ is a discount factor, and K is the
observation length.

When K = 1, it equals the interpretation problem with
one-step reward consistency, i.e., RL-in-RL. When K > 1,
the RL-in-RLK focuses on observing the long-term effects of
the behavior, and keeps the multi-step rewards or even return
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Fig. 4. The performance of our proposed RL-in-RL model in the Duckietown environment. The attentive state is an overlaid combination of the state and
the attentive heatmap of feature attribution. The feature importance ranges from 0 to 1 as the heatmap color changes from blue to red.

(K = H) consistency. By lengthening the step of reward
consistency (i.e., adopting a larger observation length K), the
attentive features would illustrate more information that helps
explain long-term behaviors.

V. VALIDITY OF OUR METHOD

In this section, we first describe experimental settings and
adopted environments in Section V-A. Then, results are shown
to validate RL-in-RL for its interpretability in Section V-B.

A. Setup

Our experiments are conducted on the Atari 2600 games
and the Duckietown environment. The Euclidean Distance is
adopted as the D function in Equation (4) and the UNet
[62] serves as the encoder-decoder architecture in Figure
2. Other experimental details and ablation studies on our
hyperparameters are in the Appendices.

Atari 2600 [63] is a widely used benchmark in the field of
RL interpretation. It consists of various RL tasks like playing
ping-pong and hiding from monsters. Actions in these tasks
are all discrete such as “left”, “right”, “up”, and “down”. The
states are color images and we adopt the 84×84×4 stacked
grayscale images as inputs following [17]. The reward during
training is normalized to -1, 0, and 1.

Duckietown [64] is an autonomous driving simulator en-
vironment. The states are 120×160×3 color images from a
single camera. The actions contain two continuous numbers
between -1 and 1, corresponding to the forward velocity and
steering angle. A positive velocity makes the agent go forward,
and a positive steering angle makes it turn left. The reward
function consists of the speed reward, the lane reward, and
the obstacle penalty. The speed reward term encourages a large
driving speed. The lane reward requires the agent to drive on
the right side of the lane. The obstacle penalty asks the agent
to avoid obstacles and invalid driving areas (for example, the
grass outside the lane).

B. Evaluations

We investigate whether the proposed method provides valid
explanations and compare RL-in-RL with other popular ap-
proaches. Specifically, experiments in this section aim at
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Fig. 5. The attentive features of RL-in-RLK with observation length K = 10.

answering two questions. First, does RL-in-RL achieve reward
consistency as expected? Second, can RL-in-RL result in high-
quality feature attribution for RL agents compared to action
matching methods? We emphasize that this work primarily
focuses on validating reward consistency for interpretable fea-
ture discovery (Section V) and studying differences between
reward matching and action matching (Section VI). Our aim is
not to “beat” all action matching methods or present a perfect
method for RL interpretation.

Validity of RL-in-RL. We compare the actions, rewards,
and RL-in-RL’s learned attention in the challenging self-
driving environment. As shown in Figure 4, the attentive
state illustrates an overlaid state with its attentive heatmap
of feature attribution. Quantitative results show that RL-in-RL
manages to keep the same reward as that of the policy to be
interpreted, and thus achieves our motivation to discover the
reward-related features during interpretation. Note that actions
are factually varied for the same rewards. It empirically proves
our assumption that the intrinsic goal of a policy, the pursuit
of rewards, cannot be fully represented by action matching.
Meanwhile, visualized results show that the pretrained policy
mainly focuses on the right white line but attends to the
near left white line when other lines are unobservable, which
conforms to human attention under the right-hand traffic rule.

In addition to one-step reward consistency, we validate
the proposed method with multi-step rewards consistency
in Figure 5. The RL-in-RLK generally maintains the same
attention pattern (i.e., the left and right white lines) with
one-step RL-in-RL, but the sights are set further ahead. It is
suggested that RL-in-RLK can not only leverage the reward
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(a) Pong (b) MsPacman (c) SpaceInvaders
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Fig. 6. Comparisons among different interpretation methods on Atari 2600. Our RL-in-RL model and the supervision-based method are visualized in the
overlaid heatmap as in Figure 4. The perturbation-based and gradient-based methods highlight the attention areas on the saliency-overlaid state.

information but also provide an adjustable observation length
for long-term behavior interpretation.

Comparative Evaluation. Several popular RL explanation
methods based on gradient [13], perturbation [12], and su-
pervision [14] are compared with our proposed method. The
first metric is the saliency map, one of the most well-known
visual methods where the intensity of the pixel color at a
particular location corresponds to the importance of the input
value [65]–[67]. As illustrated in Figure 6, the RL-in-RL and
supervision-based methods learn more precise attention than
that of the perturbation-based and gradient-based methods.
The former two methods also display the relative feature
importance in the heatmap visualization while the latter two
are incapable of telling. The second metric is the average
return of the policy that only takes masked states as inputs,
which quantitatively evaluates the quality of masks generated
by various explanation methods. In Table I, the RL-in-RL and
supervision-based methods achieve comparable performance
while the other two methods lead to significant performance
degradation, when the policy can only access the attentive
pixels learned by corresponding explanation methods.

TABLE I
AVERAGE RETURNS OVER 5 RANDOM SEEDS

Task Ours Supervision
method [14]

Perturbation
method [12]

Gradient
method [13]

Enduro 2802.43 2755.42 1741.10 819.92
Seaquest 2560.77 2356.67 1830.00 836.00

SpaceInvaders 738.46 740.45 562.92 297.73

The supervision-based method with action matching has
competitive precision with the RL-in-RL model but some
attentive details are different. However, such differences are
subtle and analyses may be subjective. Therefore, we further
compare the supervision-based action matching method with
our reward-oriented method in the Duckietown environment.
As shown in Figure 7, the main attention regions by action
matching are the left white line, the middle yellow line, and the
right white line (denoted as Fleft

w , Fy, and Fright
w respectively).

The results conform to our intuition since such three parts
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Fig. 7. Comparisons between the best-performing action matching method
and our reward-oriented RL-in-RL on the Duckietown environment.

exactly constitute the whole lane. On the other hand, the
RL-in-RL model merely highlights the right white line Fright

w

except that if only the left white line is in sight (as shown in the
third column of Figure 7). Since the widths of the lane and the
car are constants in Duckietown, the location of the right line
can uniquely determine the locations of other lines. Hence, the
attentive pattern discovered by RL-in-RL coincides with the
task’s reward function, where the agent is rewarded for driving
on the right side of the lane and penalized for driving in the
grass outside. To further understand their attention differences,
a series of analytical experiments are designed in Section VI.

VI. UNDERSTANDING REWARD AND ACTION MATCHING

In this section, we aim to understand reward matching and
action matching while interpreting RL agents by exploring
their attention differences in Figure 7. The fine-grained action
matching method based on the supervised learning [14] is
compared with RL-in-RL in the Duckietown environment.
Since the right white line Fright

w always has high importance
in the above two explaining patterns in Figure 7, our main
concern is whether the left white line Fleft

w and the middle
yellow line Fy are redundant attention. Hence, to explore
truly crucial features of the pretrained policy, experiments are
designed to answer the following three questions.
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Fig. 8. Quantitative analyses averaged across 100 random seeds. (a) The percent episode return of the pretrained policy under different lane patterns. This
measures how three lines (i.e., Fleft

w , Fy, and Fright
w ) affect the policy’s performance respectively. (b) The percent action divergence of the interpretation model

under different lane patterns, compared to the pretrained policy’s actions. This measures how three lines affect the interpretation model’s action consistency
with the pretrained policy respectively.
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Fig. 9. The interpretation results from the action matching method, when the
policy is pretrained without the middle yellow line.
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Fig. 10. The attention pattern of RL-in-RLa.

1) Is the extra attention discovered by the action
matching method redundant?

The first question is whether the extra attention Fleft
w and

Fy are redundant or not. In other words, do they truly affect
the performance of the pretrained policy? To figure out this
question, the pretrained policy is evaluated under different lane
patterns as shown in Figure 8a. The lane0 is the primitive
pattern that the policy is pretrained with, which has two white
lines and one yellow line.

Experimental results are illustrated in Figure 8a. Firstly, Fy

is removed in the lane1, and the pretrained policy maintains
the comparative performance. It validates that the yellow line
is not the essential feature of the pretrained policy and thus the
attention is redundant. Secondly, Fleft

w is removed in the lane2,
and the pretrained policy’s performance slightly decreases. In
fact, the RL-in-RL model does highlight this region in cases
where no other lines are in sight. Therefore, we suggest that
the left white line occasionally affects the agent’s decision but
is redundant most of the time. Thirdly, Fright

w is removed in
the lane3, and a sharp decrease in performance is observed. It

proves that the right white line is crucial for the agent and the
RL-in-RL model discovers the truly essential feature.

To further verify that the yellow line is the redundant
attention, the policy πpre is re-trained in the lane1 as shown in
Figure 8a. Since the agent is trained without any involvement
of the yellow line, its decision-making process obviously has
nothing to do with this feature. We adopt the supervision-based
action matching method to figure out its attention features
and the results are illustrated in Figure 9. The interpretation
method based on action matching still focuses on the middle
yellow line, which further proves that action matching leads
to irrelevant and redundant feature attention.

2) Does the action matching principle lead to redundant
attention?

After Fy is proved to be redundant attention of the action
matching method, the following question is what the cause
is. It remains unclear whether it comes from the action
matching principle or the supervised learning approach. To
decompose these two factors, a variant of RL-in-RL (denoted
as RL-in-RLa) is designed to conduct action matching in the
RL framework. RL-in-RLa changes the reward function in
Equation (4) to:

r̃at = −D(at, ãt) = −D
(
πpre (st) , π̃ (st)

)
. (10)

The goal of RL-in-RLa is the same as that of action
matching, while its optimization method is reinforcement
learning instead of supervised learning. Figure 10 shows
that attentive regions in RL-in-RLa are similar to that in
the supervision-based action matching method (as shown in
Figure 7), where the redundant attention Fy still has high
importance. In this case, we can conclude that the redundant
attention results from the action matching principle instead of
the optimization method.

3) Why does the action matching principle lead to
redundant attention?

As far as we know, the action matching principle can lead to
fake attention like Fy. Here comes the next question: why does
it cause fake attention? In other words, what is the contribution
of Fy during the process of matching actions? Considering a
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deterministic environment where the same action at under the
same state st results in the same next state st+1, matching
actions factually equals matching the next states. In this case,
a minor variance in the agent’s position can induce significant
pixel differences in the next state. Hence, an assumption of the
yellow line’s role is to help the agent locate its current position
and thus take the same action. To verify our assumption,
another two yellow lines are added to the lane, as shown in
lane4 of Figure 8b. Actions of one trajectory are collected
separately for lane0, lane1, and lane4. The action matching
loss between two trajectories collected respectively under the
original states and the attentive states for the same lane pattern
is calculated as follows:

LKL = DKL(As, As̃), (11)

where DKL refers to the KL divergence and A is the action
trajectory within 500 interactions with the environment. As
shown in Figure 8b, compared to actions under the primi-
tive pattern (i.e., lane0), actions under the lane1 have larger
divergence while those under the lane4 are less divergent.
That is to say, extra attention on the yellow lane indeed
raises the action matching degree although it’s irrelevant to the
pursuit of high rewards for the agent. Therefore, the redundant
attention caused by action matching can be seen as a kind
of “overfitting”, which is dedicated to identical actions but
neglects the reward-related goal of the policy.

Discussion. What we know so far is that using action
matching to explain RL agents would lead to redundant feature
attribution. It results from the fact that actions only indi-
rectly represent the agent’s reward-related goal. On the other
hand, we have to admit that interpretable features discovered
by action matching methods indeed help users predict the
agent’s actions, which is a natural benefit of matching actions.
Meanwhile, the interpretable features discovered with reward
consistency are more like the “safety boundary”, which are
the key elements that guarantee the agent’s expected perfor-
mance. Hopefully, reward and action matching principles can
complement each other and provide a more comprehensive
understanding of deep RL in real-world applications, for both
users and researchers.

VII. CONCLUSION

In this paper, we discussed the limitations of the com-
monly used assumption, the action matching principle, in RL
interpretation methods. It is suggested that action matching
cannot truly interpret the agent since it differs from the reward-
oriented goal of RL. Hence, the proposed method firstly
leverages reward consistency during feature attribution and
models the interpretation problem as a new RL problem,
denoted as RL-in-RL. Moreover, it provides an adjustable
observation length for one-step reward or multi-step reward (or
return) consistency, depending on the requirements of behavior
analyses. Extensive experiments validate the proposed model
and support our concerns that action matching would lead to
redundant and non-causal attention during interpretation since
it is dedicated to exactly identical actions and thus results
in a sort of “overfitting”. Nevertheless, although RL-in-RL

shows superior interpretability and dispenses with redundant
attention, further exploration of interpreting RL tasks with
explicit causality is left for future work.

APPENDIX A
EXPERIMENTAL DETAILS

A. Network Structure
In our experiments, the PPO algorithm is adopted for

training. In PPO, the critic network is used to predict the state-
value function and shares a common feature extractor with
the actor. The actor and critic networks are each connected
with a linear layer after the feature extractor. In the proposed
method, the critic’s linear layer of the pretrained policy is
retrained because the state value changes in the interpretation
RL problem. The RL-in-RL model, illustrated in Figure 2, uses
an encoder-decoder architecture with DNNs for a universal
semantic segmentation task. It takes state images as inputs
and produces learned saliency masks, a dense prediction task
common in vision applications such as semantic segmentation
[56], [57] and scene depth estimation [58]. To mitigate task-
irrelevant attention that may arise from complex architectures,
we’ve adopted the simpler U-Net architecture with minor
modifications, following its proven efficacy in RL explanations
[14], [41]. As shown in Figure 11, firstly, the Sigmoid layer is
added to project the mask from RH×W×C to [0, 1]H×W×C ,
which can better reflect the relative feature importance and
ensure the scale of attentive states. Secondly, the ReLU(f(x))
layer is added to speed up convergence. It can be formulated as
ReLU(x−β

1−β ), where β ∈ [0, 1) is a hyperparameter adjusting
its effects on the speed of model converging.

encoder

decoder

output

input

image

3  16  16

16 32 32

32 64 64
64 128 128 128 256 256

64 64

32 32

128 128

1 1 16  16

Conv 3x3, BN, ReLU
Copy and crop
max pool 2x2 
up-conv 2x2
Conv 1x1, Sigmoid
ReLU(𝑓(𝑥))

Fig. 11. The architecture of the encoder-decoder network in RL-in-RL.

B. Implementation
We use the following software versions: Python 3.7, Pytorch

1.10.0 [68], Gym 0.15.4 [69], and Duckietown 6.2.24 [64].
Our implementations of gradient-based [13], perturbation-
based [12], and supervision-based [14] methods follow their
respective author-provided implementations from GitHub or
published papers. The Optimal hyperparameters are adopted
for each method.

APPENDIX B
FURTHER STUDIES

A. Validity of RL-in-RL
The proposed RL-in-RL model is verified on more tasks of

the Atari2600, as shown in Figure 12. In the Enduro task for



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 10

(a) Enduro (b) Assault (c) Breakout

S
ta

te
A

tt
en

ti
v

e

S
ta

te

Fig. 12. More results of the RL-in-RL model on Atari2600. The attentive states are visualized as in Figure 4.

avoiding obstacles while driving, the attention is mainly on
the driving boundary, obstacles, and the agent’s own position.
It is clear that the distant boundary is less attended to since
it has a smaller impact on the current behavior. Similarly, the
most distant obstacles are not noteworthy as shown in the
third scenario. In the Assault task for offense and defense,
attentive areas are generally the player, spaceships, and bullets.
In the Breakout task for hitting colored squares with a ball, the
agent mainly focuses on the small ball and the board, since
whether the board catches the ball or not directly determines
the reward. Another thing worth noting is the top of the
rainbow block in the third scenario. It is suggested that for
the pretrained policy, the actor prefers to send the ball to the
top of the rainbow block to get a higher reward.

B. Ablation Studies on Hyperparameters

The effects of hyperparameters α and β are explored on
the Atari AirRaid task. α is the weight of the auxiliary task
loss as illustrated in Equation (8), and β is to speed up
the training process as described in Appendix A-A. Results
are demonstrated in Figure 13. In the first experiment, α is
fixed to 0.1, and β is adjusted between 0 and 0.3. Visualized
results are mostly the same since β only affects the converging
speed. In the second experiment, β is fixed to 0.1 and α is
adjusted between 0 and 0.4. When α is set to 0, the attention
almost highlights all of the observations. As α increases, the
mask becomes more sparse and emphasizes more notewor-
thy parts. Specifically, the background’s and the buildings’
attention importance gradually becomes lower because of their
relatively small impact on the agent’s decision. The player’s
and aircraft’s attention importance has become smaller but
remains the most salient in the whole observation, as they
directly affect the agent’s obtained rewards.

(a) 𝛼 = 0.1

𝛽 = 0

𝛽 = 0.05

𝛽 = 0.1

𝛽 = 0.15

𝛽 = 0.2

𝛽 = 0.3

(b) 𝛽 = 0.1

𝛼 = 0

𝛼 = 0.01

𝛼 = 0.05

𝛼 = 0.1

𝛼 = 0.2

𝛼 = 0.4

Fig. 13. Two ablation studies on the hyperparameters. α is the weight of
the auxiliary task loss as in Equation (8), while β is to speed up the training
process as described in Appendix A.

Furthermore, we compare the effect of α to the action
matching method [14]. This hyperparameter controls attention
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Fig. 14. Comparative results of the RL-in-RL method and the action matching
method’s ablation studies on the hyperparameter α.

sparseness. As shown in Figure 14, the attentive patterns and
their differences maintain as α varies. It coincides with our
conclusion in Section VI that the redundant feature discovery
is caused by the action matching principle instead of the
optimization method or the hyperparameter.

C. Tasks with Sparse Rewards

This paper hasn’t particularly discussed the sparse reward
problem as most of the explainable RL research [6], [15],
[70], [71]. However, our experiments actually validated the
ability of RL-in-RL to deal with such tasks. Specifically, in
the Atari Pong, Breakout, and SpaceInvaders environments (cf.
Figure 6 and 12), agents only get non-zero (1 or -1) rewards
when the round is over. As shown in Table II, during the
game, only 1.36%, 4.37%, and 3.59% of rewards are non-zero
respectively (evaluated on 100 random seeds). Furthermore,
the RL-in-RLK presented in Section IV-C is compatible with
the sparse reward problem and can fully leverage the sparse
reward information.

TABLE II
TASKS WITH SPARSE REWARDS

Task Pong Breakout SpaceInvaders
Horizon Steps 1633.93 1356.50 921.09

Non-zero Reward Steps 22.27 59.29 33.03
Non-zero Reward Percentage 1.36% 4.37% 3.59%
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Fig. 15. Visulization of attention shift in the zigzag turn. Three rows
correspond to original states, attentive states, and masked states, respectively.
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D. Analysis of Failure Case

RL-in-RL provides an explanation for why RL agents may
not perform robustly in novel situations different from their
training scene from the viewpoint of attention shift, in a
similar manner to [14]. As visualized in Figure 15, the agent
fails to judge decisive features and mistakenly attends to the
task-irrelevant grassland, because the zigzag turn has never
been encountered during training. Catastrophic cumulative
attention shifts would lead to problematic situations and cause
significant performance degradation for practical RL agents.
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